首页> 外文学位 >Gold nanorods: Synthesis, structural manipulation, and self-assembly.
【24h】

Gold nanorods: Synthesis, structural manipulation, and self-assembly.

机译:金纳米棒:合成,结构操纵和自组装。

获取原文
获取原文并翻译 | 示例

摘要

This work describes methods for the synthesis, structural manipulation, and self-assembly of one-dimensional gold nanostructures. The thesis begins with an efficient technique for the synthesis and separation of gold nanorods from a complex mixture, which has been a long standing challenge in the field of inorganic nanocrystals. The key aspect of our approach is the combination of partial oxidative dissolution and gravitational sedimentation of gold nanostructures. In addition, the length of nanorods can be tuned using reversible elongation and shortening of rods when Au (I) and Au (III) ions are used, respectively. The synthesis of extremely long gold nanowires measuring up to ∼25 microm was accomplished by this novel synthetic approach. The width of gold nanowires can also be precisely controlled by adjusting the concentration of Au (I) ions in the growth solution. This thesis also describes a procedure for the large scale synthesis of gold nanorods. The gram quantity of nearly monodisperse single crystalline nanorods was synthesized by slow reduction of Au (I) ions on the surface of pre-formed gold nanorods. This results in the amplification of nanorods without the formation of any undesirable shapes. Finally, the surface functionalization technique described in this thesis allows for the synthesis of polymer-functionalized gold nanorods. Our investigation revealed their unique ability to undergo spontaneous self-organization into ring-like superstructures. This process is templated by water microdroplets which condense from the air when a volatile organic solvent evaporates. This self-assembly does not require any lithographic technique and can organize millions of gold nanorods into rings in a matter of seconds.
机译:这项工作描述了一维金纳米结构的合成,结构处理和自组装的方法。本文以一种从复杂混合物中合成和分离金纳米棒的有效技术开始,这一直是无机纳米晶体领域的长期挑战。我们方法的关键方面是金纳米结构的部分氧化溶解和重力沉降的结合。另外,当分别使用Au(I)和Au(III)离子时,可以使用可逆伸长和缩短棒来调整纳米棒的长度。通过这种新颖的合成方法可以完成长达25微米的超长金纳米线的合成。金纳米线的宽度也可以通过调节生长溶液中Au(I)离子的浓度来精确控制。本文还描述了大规模合成金纳米棒的方法。通过缓慢还原预先形成的金纳米棒表面上的Au(I)离子,合成了几乎单分散的单晶纳米棒的克量。这导致纳米棒的扩增而不形成任何不希望的形状。最后,本文描述的表面功能化技术可以合成聚合物功能化的金纳米棒。我们的研究表明,它们具有自发的自组织成环状上部结构的独特能力。该过程以微滴为模板,当挥发性有机溶剂蒸发时,微滴从空气中凝结。这种自组装不需要任何光刻技术,并且可以在几秒钟内将数百万个金纳米棒组织成环。

著录项

  • 作者

    Khanal, Bishnu Prasad.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Engineering Electronics and Electrical.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号