首页> 外文学位 >CHEMICAL AND PHYSICAL TRANSFORMATIONS OF CYANOGEN AND CARBON-MONOXIDE AT HIGH PRESSURE (SOLID-STATE, SPECTROSCOPY).
【24h】

CHEMICAL AND PHYSICAL TRANSFORMATIONS OF CYANOGEN AND CARBON-MONOXIDE AT HIGH PRESSURE (SOLID-STATE, SPECTROSCOPY).

机译:高压(固态,光谱学)下氰和一氧化碳的化学和物理转化。

获取原文
获取原文并翻译 | 示例

摘要

Unsaturated molecules are not stable under extreme compressions; however, the reactions and mechanisms which convert these molecules to saturated species are not known. C(,2)N(,2) and CO, the simplest unsaturated nitrile and carbonyl, are logical candidates for exploring these reactions. In addition to instabilities of these unsaturated molecules, some of the unique chemistry of highly compressed matter and effects of pressure on solid-state reactions are reported.;The kinetics of the conversion of p-DISN to paracyanogen have been determined by monitoring Fourier-transform infrared spectra at pressures between 10 and 12 GPa and temperature between 290 and 350 K. The reaction kinetics can be described by an Avrami equation with exponent 0.5 and specific rate constant 0.40 hr('-1(VBAR)(VBAR)2) at 10 GPa and 297 K. The activation enthalpy and volume are 28 KJ(VBAR)(VBAR)mol and -3.3 cm('3)(VBAR)(VBAR)mol, respectively. A two-step mechanism is suggested that involves diffusion of the p-DISN chains into an arrangement in which 4+2 cycloadditions occur between adjacent p-DISN chains.;At 297 K, CO is not stable photochemically at 4.2 GPa nor thermochemically at 5.0 GPa. At these and higher pressures, CO disproportionates into CO(,2) and lactone polymers which can be recovered at room pressure. A multimer of CO, probably (CO)(,5), is isolated in a matrix of N(,2) at 5.0 GPa. A possible mechanism of the disproportionated polymerization of CO may include the formation of multimer (CO)(,5), its fragmentation into CO, CO(,2) and C(,3)O(,2), and polymerization of these fragments.;Chemical and phase transformations of C(,2)N(,2) at room temperature and pressure as high as 12 GPa were studied by Raman and Fourier-transform infrared absorption spectroscopy. Three phase transitions of the monomer were identified; solidification to C(,2)N(,2) I at 0.3 GPa and two solid-solid transformations, C(,2)H(,2) I-to-C(,2)N(,2) II at 0.5 GPa and C(,2)N(,2) II- to-C(,2)N(,2) III at 2 GPa. At 3.5 GPa, C(,2)N(,2) reversibly polymerizes to a linear chain, (-(C(,2)N(,2))(,2)-)(,m). Above 10 GPa, further irreversible reactions convert these chains to a material that is very chemically and thermally stable and can be recovered at atmospheric pressure. Vibrational spectra and chemical arguments indicate that the linear chain polymer is poly-(2,3-diiminosuccinonitrile), p-DISN, and the stable product is paracyanogen, a ladder of fused pyrazine rings that may be highly cross-linked.
机译:不饱和分子在极端压缩下不稳定。然而,将这些分子转化为饱和物质的反应和机理尚不清楚。 C(,2)N(,2)和CO(最简单的不饱和腈和羰基)是探索这些反应的合理候选物。除了这些不饱和分子的不稳定性外,还报道了一些高度压缩物质的独特化学性质以及压力对固态反应的影响。;通过监测傅立叶变换确定了p-DISN转化为副氰的动力学红外光谱在10至12 GPa的压力和290至350 K的温度之间。反应动力学可以用一个Avrami方程来描述,该方程的指数为0.5,比速率常数为0.40 hr('-1(VBAR)(VBAR)2)在10 GPa和297K。活化焓和体积分别为28 KJ(VBAR)(VBAR)mol和-3.3 cm('3)(VBAR)(VBAR)mol。提出了一个两步机制,涉及将p-DISN链扩散到相邻p-DISN链之间发生4 + 2环加成的排列中;在297 K时,CO在4.2 GPa时光化学不稳定,在5.0 G时热化学不稳定GPa。在这些压力和更高压力下,CO歧化成CO(,2)和内酯聚合物,可以在室温下将其回收。在5.0 GPa的N(,2)矩阵中分离出CO的多聚物,可能是(CO)(,5)。 CO歧化聚合的可能机理可能包括多聚体(CO)(,5)的形成,其片段化成CO,CO(,2)和C(,3)O(,2)以及这些片段的聚合通过拉曼光谱和傅里叶变换红外吸收光谱研究了C(,2)N(,2)在室温和高达12 GPa的压力下的化学和相变。确定了单体的三相转变。在0.3 GPa的压力下固化为C(,2)N(,2)I和两次固-固转变,0.5时的C(,2)H(,2)I到C(,2)N(,2)II GPa和C(,2)N(,2)II至C(,2)N(,2)III在2 GPa下。在3.5 GPa下,C(,2)N(,2)可逆地聚合成线性链(-(C(,2)N(,2))(,2)-)(,m)。高于10 GPa,进一步的不可逆反应会将这些链转化为化学和热稳定性非常高的材料,可以在大气压下回收。振动光谱和化学论证表明,线性链聚合物是聚-(2,3-二亚氨基琥珀酰亚胺),p-DISN,稳定产物是对氰基,这是可能高度交联的稠合吡嗪环的阶梯。

著录项

  • 作者

    YOO, CHOONG-SHIK.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 1986
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号