首页> 外文学位 >Chemical and physical transformations of simple molecular systems under extreme pressures and temperatures.
【24h】

Chemical and physical transformations of simple molecular systems under extreme pressures and temperatures.

机译:简单分子系统在极端压力和温度下的化学和物理转化。

获取原文
获取原文并翻译 | 示例

摘要

Under sufficient compression molecules behave in exotic ways leading to interesting solid state transformations such as disorder-order transitions, polymerization/ionization, or path dependent metastable phases. These transitions are largely kinetic and strain controlled processes well beyond that of thermodynamic constraints or minimum energy configurations. To understand these processes the application of both static and dynamic pressure/temperature regimes with proper in-situ diagnostic techniques are essential.;Solidification of hydrogen and deuterium has been studied under dynamic compression using dynamic-diamond anvil cell, time-resolved Raman spectroscopy, and fast micro-photography. Liquid H2 or D2 was found to solidify into a grain boundary free crystal grown from the outer edge of the sample chamber in 1-30 ms depending on the compression rate. The time scale of solidification agrees well with that of the discontinuous Raman shift across the liquid/solid phase boundary. Raman studies of nitrogen were performed to investigate the melting curve and solid-solid phase transitions in the pressure-temperature range of 25 to 103 GPa and 300 to 2000 K. The solid-liquid phase boundary has been probed with time-resolved Raman spectroscopy on ramp heated nitrogen in diamond anvil cell, showing a melting maximum at 73 GPa and 1690 K. The dynamic shear-induced martensitic &agr;→&ohgr; phase transition was probed using time-resolved x-ray diffraction. Diffraction patterns were obtained with ms resolution allowing for the analysis of the structural evolution through the phase transition. Under sufficient compressive load the transition onset is delayed from 6.2 to 12.5 GPa however the kinetically inhibited reaction occurs quickly after the onset in ∼4 GPa.;The pressure-induced physical and chemical transformations of tetracyanoethylene were studied in diamond anvil cells with micro-Raman and emission spectroscopy, and synchrotron x-ray diffraction. TCNE undergoes a shear-induced phase transition at 10 GPa and then a chemical change to two-dimensional C=N polymers above 14 GPa. Laser-heating of the C=N polymer above 25 GPa further converts to a theoretically predicted 3D C-N network structure, evident from an emergence of new Raman C-N stretching frequency at 1400 cm -1, strong fluorescence centered at 640 nm, and the visual appearance of a translucent solid.
机译:在足够的压缩下,分子以奇异的方式表现出有趣的固态转变,例如无序阶跃转变,聚合/电离或依赖于路径的亚稳相。这些转变很大程度上是由动力学和应变控制的过程,远远超出了热力学约束或最小能量配置的过程。要了解这些过程,必须在静态和动态压力/温度范围内采用适当的原位诊断技术进行应用。;已经使用动态金刚石砧盒,时间分辨拉曼光谱在动态压缩下研究了氢和氘的固溶化,和快速的显微摄影。发现液体H2或D2根据压缩速率在1-30毫秒内固化成从样品室外边缘生长的晶界自由晶体。凝固的时间尺度与跨越液相/固相边界的不连续拉曼位移的时间尺度非常吻合。进行了拉曼氮气研究,以研究在25至103 GPa和300至2000 K的压力温度范围内的熔解曲线和固-固相变。使用时间分辨拉曼光谱仪对固液相边界进行了探测。动态剪切诱导的马氏体&agr;→&ohgr;在金刚石砧室中逐渐加热氮气,在73 GPa和1690 K时显示最大熔化。使用时间分辨X射线衍射探测相变。以ms分辨率获得衍射图,从而可以分析通过相变的结构演化。在足够的压缩载荷下,转变开始时间从6.2 GPa延迟到12.5 GPa,但是动力学抑制反应在开始至大约4 GPa后迅速发生。;在金刚石砧座中,用微拉曼研究了压力诱导的四氰基乙烯的物理和化学转变。发射光谱,同步加速器X射线衍射。 TCNE在10 GPa时经历了剪切诱导的相变,然后化学转变为14 GPa以上的二维C = N聚合物。将C = N聚合物的激光加热到25 GPa以上,进一步转换为理论上预测的3D CN网络结构,这从出现在1400 cm -1处的新拉曼CN拉伸频率,以640 nm为中心的强荧光的出现可见一斑。半透明固体。

著录项

  • 作者

    Tomasino, Dane Anthony.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Physical chemistry.;Chemistry.;Molecular chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号