首页> 外文学位 >CONTROL OF FLIGHT THROUGH MICROBURST WIND SHEAR USING DETERMINISTIC TRAJECTORY OPTIMIZATION.
【24h】

CONTROL OF FLIGHT THROUGH MICROBURST WIND SHEAR USING DETERMINISTIC TRAJECTORY OPTIMIZATION.

机译:通过确定性弹道优化控制微爆破风的飞行控制。

获取原文
获取原文并翻译 | 示例

摘要

Aircraft control strategies that minimize the hazard of longitudinal flight through microburst wind shear are developed and analyzed, principally using deterministic trajectory optimization and to a lesser extent using classical control. The purpose is to determine the ultimate limits to safe performance in a microburst and develop control strategies that achieve such performance. Several tragic microburst-related accidents have demonstrated the need for improved control strategies.; Over 1,100 optimal trajectories were computed for jet transport and general aviation aircraft flying through idealized and actual microbursts. They were generated using a new Successive Quadratic Programs trajectory optimization algorithm, which directly handles inequality constraints. Qualitative aspects of the best strategies provide a composite picture of good control in a microburst. Variations of the optimal performance with microburst type, intensity, length scale, and location define safe-performance limits.; Control strategies that track glide path best use pitch steering to counteract airspeed variations and maintain constant lift. Throttle control regulates airspeed loosely. In intense headwind/tailwind microbursts, this strategy holds angle of attack at its stall limit when airspeed drops below the 1-g stall limit. Anticipatory throttle control helps achieve safe performance in intense microbursts.; Optimal safe-performance limits show three length-scale regimes. At short length scales, hazards usually associated with gustiness predominate. At intermediate length scales, a degraded ability to maintain flight path and/or vertical velocity sets the limiting microburst intensities for safe performance. At very long microburst length scales, the hazards associated with intense steady winds are the critical safety limits. Performance safety also varies strongly with microburst location.; The safe-performance limits show that both aircraft, if controlled properly, can penetrate some very severe microbursts. Nevertheless, even the best control strategies have their limits. The jet transport safe-performance limits occur at higher microburst intensities than the general aviation limits.; These studies provide guidelines for design and evaluation of practical microburst-encounter control laws. Controllers should replicate the pitch steering and throttle strategies found in the composite picture of good control. Evaluation should include frequency response analysis and comparison of closed-loop safe-performance limits with optimal limits.
机译:航空器控制策略的开发和分析,主要是通过确定性轨迹优化,在较小程度上使用经典控制,来开发和分析通过微爆发风切变使纵向飞行的危害最小化的方法。目的是确定对微爆安全性能的最终限制,并制定实现此类性能的控制策略。几次与微爆炸有关的悲剧性事故表明需要改进控制策略。计算了超过1100条最佳轨迹,用于喷气运输和通用航空飞机飞过理想化和实际的微爆。它们是使用新的连续二次程序轨迹优化算法生成的,该算法直接处理不平等约束。最佳策略的定性方面提供了微爆发中良好控制的综合情况。最佳性能随微爆类型,强度,长度尺度和位置的变化确定了安全性能极限。跟踪滑行路径的控制策略最好使用俯仰转向来抵消空速变化并保持恒定的升力。节气门控制松散地调节空速。在强烈的逆风/顺风微爆中,当空速降至1 g失速极限以下时,该策略将迎角保持在失速极限。预期的油门控制有助于在强烈的微暴中实现安全性能。最佳的安全性能限值显示了三种长度范围。在短尺度上,通常与阵阵风有关的危害占主导地位。在中等长度的尺度上,维持飞行路径和/或垂直速度的能力下降,为安全性能设定了极限的微爆强度。在非常长的微爆长度尺度上,与强稳定风有关的危害是关键的安全极限。性能安全性也随微爆位置的不同而有很大差异。安全性能极限表明,两架飞机如果受到适当控制,都可以穿透一些非常严重的微爆。但是,即使最好的控制策略也有其局限性。喷气运输的安全性能极限发生在比一般航空极限更高的微爆强度下。这些研究为设计和评估实际的微暴遭遇控制法则提供了指南。控制器应复制良好控制的综合图中发现的变桨转向和油门策略。评估应包括频率响应分析以及将闭环安全性能限值与最佳限值进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号