首页> 外文学位 >High liquid fuel yielding biofuel processes and a roadmap for the future transportation.
【24h】

High liquid fuel yielding biofuel processes and a roadmap for the future transportation.

机译:高液体燃料产量的生物燃料工艺和未来运输的路线图。

获取原文
获取原文并翻译 | 示例

摘要

In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector.;To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel.;To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil.;A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to liquid fuel, rather than growing biomass.;Furthermore, based on the Sun-to-Wheels recovery for different transportation pathways, synergistic and complementary use of electricity, hydrogen and biomass, all derived from solar energy, is presented in an energy efficient roadmap to successfully propel the entire future transportation sector.
机译:在缺乏化石燃料的世界中,原油将变得稀缺,电力无法满足运输需求,必须生产运输液体燃料,生物质衍生的液体燃料可以自然替代。但是,当前已知的生物质到液体燃料转化过程的碳效率为35-40%,每吨生物质产生90乙醇加仑当量(ege)。再加上生物量(<1%)捕获太阳能的效率明显低于H 2(10-27%)和电(20-42%),这意味着没有足够的土地面积为了满足整个运输行业的需求。为了解决这一难题,在这项工作中提出了许多工艺:基于生物质气化的混合氢碳(H2CAR)工艺,然后是费托工艺,使得100使用源自无碳能量的氢,可实现%的碳效率,产生330 ege /吨生物质。 H2CAR工艺的氢气需求量为0.33 kg /升柴油。;为减少与H2CAR工艺相关的氢气需求量,提出了一种基于生物质快速加氢热解/加氢脱氧的氢生物油(H2Bioil)工艺,该工艺可实现液态每升油消耗0.11公斤氢气,燃料产量为215吉格/吨。由于H2Bioil工艺的氢气消耗量较低,在使用煤气化(H2Bioil-C)或天然气重整器(H 2Bioil-NG)生成的热合成气为氢气供应和工艺热的过程中,协同整合的过渡途径是可行的生物质快速加氢热解/加氢脱氧。 H2Bioil工艺的另一个分支是H2Bioil-B工艺,其中加氢热解所需的氢气是从一部分生物质气化中获得的。对于任何自给自足的生物质向生物燃料的转化,H2Bioil-B实现了最高的液体燃料产量(126-146 ege /吨生物质)。最后,建议将H2Bioil工艺与H2CAR工艺集成在一起,以0.24千克氢气/升油的消耗可以实现100%的碳效率(330 ege /吨生物质)。-太阳到燃料效率分析表明,从空气中提取二氧化碳并将其转化为液体燃料的效率至少比种植专用燃料作物并将其转化为液体燃料的效率高两倍,即使藻类可以实现最高的生物量增长率。这意味着,最好首先从可持续利用的废物(SAW)生物质中生产液体燃料,如果SAW生物质无法满足对液体燃料的需求,则应从空气中提取CO2并将其转化为液体燃料,而不是通过增加此外,基于不同运输途径的太阳到车轮的回收,在能源高效的路线图中提出了来自太阳能的电力,氢气和生物质的协同补充利用,成功推动了整个未来的运输部门。

著录项

  • 作者

    Singh, Navneet R.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Chemical.;Sustainability.;Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 342 p.
  • 总页数 342
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号