首页> 外文学位 >Multiphase flow management in confined geometries applied to the optimization of direct methanol fuel cells.
【24h】

Multiphase flow management in confined geometries applied to the optimization of direct methanol fuel cells.

机译:受限几何结构中的多相流管理应用于直接甲醇燃料电池的优化。

获取原文
获取原文并翻译 | 示例

摘要

The production of CO2 gas at the DMFC anode leads to dramatic increases in pumping power requirements and reduced power output because of mass transfer limitations as bubble trains form in the channels of larger stacks. Experimental observations taken in a 5 cm2 DMFC test cell operated at 60°C, 1 atm, and with a methanol/water fuel flow-rates of 5-10 cc min-1 indicate that the rate of bubble formation can be reduced by increasing the fuel flow because more liquid is available for the CO2 to dissolve in. Further observations indicate that KOH and LiOH added to the fuel eliminates CO2 gas formation in situ at low concentrations because of the greatly increased solubility that results.;A mathematical model for the volumetric rate of CO2 gas production that includes effects of temperature and solubility is developed and extended to include the effects of hydroxide ions in solution. The model is used to predict the onset location of gas formation in the flow field as well as the void fraction at any point in the flow field. Predictions from the model agree very well with our experiments. Model predictions explain differences in the initial location of bubble formation for fuel solutions pre-saturated with CO2 as opposed to CO2-free solutions. Experiments with KOH and LiOH added to fuel solutions confirm the validity of the model extension that includes solubility that is enhanced by chemical reaction.;Experiments with LiOH, KOH, and ammonium hydroxide show that the long-term durability of standard Pt-Ru/Nafion/Pt membrane electrode assemblies is compromised because of the presence of lithium, potassium, and ammonium cations that interact with the Nafion membrane and result in increasing the ohmic limitations of the polymer electrolyte membrane. Experiments with Ca(OH) 2, while reducing gas formation, precipitate the product CaCO3 out of solution too rapidly for downstream filtering, blocking channels in the flow field. Attempts to manipulate multiphase flow by altering fuel fluid properties through the addition of glycerin, sucrose, and Triton X-100 are negative, resulting in no useful improvements due to oxidation of the additives on the platinum catalyst and poisoning by reaction intermediates.;Experiments with independent pressurization of the direct methanol fuel cell anode and cathode allow for the observation of DMFC operation with carbon dioxide gas formation suppressed. Results indicate that the limiting current density is strongly related to the applied pressure, and, therefore, to the presence of CO2 in the liquid phase. An additional experiment where CO2 is allowed to accumulate in recycled anode fuel solution over a period of time and is then stripped from solution using nitrogen gas indicates that the presence of CO2 in anode fuel solution at any pressure contributes to significant decreases in power and current density. Because CO2 bubbles are ubiquitous in direct methanol fuel cells, this finding is key to the optimization of these systems.;Principles of kinetic theory are used to model the coalescence of bubbles in horizontal and vertical upflows where bubble movements are restricted by channel geometry. There are four critical variables that determine the rate at which a swarm of small bubbles will coalesce: the initial bubble population, the average initial bubble diameter, the average relative velocity of the bubbles, and the efficiency of bubble collisions. Model descriptions of bubble population and size distributions agree well with experimental results for air/water and air/water/glycerin systems performed in a rectangular channel with an aspect ratio of 12.5 and a cross-sectional area of 2 cm2 under both vertical and horizontal orientations.
机译:DMFC阳极处产生的CO2气体会导致泵送功率需求急剧增加,并且由于在较大烟囱的通道中形成气泡列而导致的传质限制,导致了功率输出的减少。在60°C,1 atm且甲醇/水燃料流速为5-10 cc min-1的5 cm2 DMFC测试池中进行的实验观察表明,通过增加气泡的形成可以降低气泡形成的速率。燃料流动,因为有更多的液体可供CO2溶解。进一步的观察表明,添加到燃料中的KOH和LiOH可在低浓度下消除原位形成CO2气体,因为其溶解度大大提高。开发并扩展了包括温度和溶解度影响的CO2气体产生速率,并将其扩展到包括溶液中氢氧根离子的影响。该模型用于预测流场中气体形成的起始位置以及流场中任意点的空隙率。该模型的预测与我们的实验非常吻合。模型预测解释了与不含CO2的溶液相比,用CO2预饱和的燃料溶液在气泡形成的初始位置的差异。在燃料溶液中添加KOH和LiOH的实验证实了模型扩展的有效性,该模型扩展包括通过化学反应增强的溶解度。; LiOH,KOH和氢氧化铵的实验表明,标准Pt-Ru / Nafion的长期耐久性/ Pt膜电极组件受到损害,因为存在与Nafion膜相互作用的锂,钾和铵阳离子,并导致聚合物电解质膜的欧姆极限增加。使用Ca(OH)2进行的实验在减少气体形成的同时,过快地从溶液中沉淀出CaCO3,无法进行下游过滤,从而阻塞了流场中的通道。通过添加甘油,蔗糖和Triton X-100改变燃料流体的性质来操纵多相流的尝试是负面的,由于铂催化剂上添加剂的氧化和反应中间体的中毒,导致没有任何有用的改进。直接甲醇燃料电池阳极和阴极的独立加压可以观察到DMFC的运行,同时抑制了二氧化碳的形成。结果表明,极限电流密度与施加的压力密切相关,因此与液相中存在的CO2密切相关。允许在一段时间内在回收的阳极燃料溶液中累积CO2,然后使用氮气将其从溶液中汽提的另一项实验表明,在任何压力下阳极燃料溶液中都存在CO2会导致功率和电流密度显着降低。由于直接甲醇燃料电池中普遍存在CO2气泡,因此这一发现是优化这些系统的关键。动力学原理用于模拟水平和垂直向上流动中气泡的聚结,其中气泡运动受通道几何形状限制。有四个关键变量可确定大量小气泡聚结的速率:初始气泡数量,平均初始气泡直径,平均气泡平均相对速度以及气泡碰撞的效率。气泡数量和尺寸分布的模型描述与在垂直和水平方向上纵横比为12.5,横截面积为2 cm2的矩形通道中进行的空气/水和空气/水/甘油系统的实验结果非常吻合。

著录项

  • 作者

    Lundin, Michael D.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Chemical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号