首页> 外文学位 >Riemannian geometry of non-Riemannian spaces.
【24h】

Riemannian geometry of non-Riemannian spaces.

机译:非黎曼空间的黎曼几何。

获取原文
获取原文并翻译 | 示例

摘要

Two problems from Riemannian geometry are considered in the more general context of metrically complete, locally compact inner metric spaces: (1) controlling topology through geometry and (2) understanding the geometry and topology of Gromov-Hausdorff limits. The questions are of interest because the limits of Riemannian manifolds are inner metric spaces whose structure has recently received attention.;Basic definitions are recalled (including one of bounded curvature) and some new geometric concepts introduced, including geodesic terminal (a point through which some geodesic cannot be continued) and geodesic completeness (no geodesic terminals exist). The local topological structure of a space X with bounded curvature and nowhere dense set T of geodesic terminals is established: x is topological manifold with boundary, and ;Applications of the above results are generalizations of Cartan's classification of simply connected space forms, and the Cartan-Hadamard theorem.;Geometric properties inherited by a Gromov-Hausdorff limit of inner metric spaces are also addressed. Curvature conditions are given for which a geodesic in the limit can be approximated by geodesics in the converging spaces; from such approximations many geometric properties in the limit (e.g. bounded curvature, geodesic completeness) can be deduced.;Finally, the "lifting" of the metric described in the second paragraph above gives rise to a "local action" in the tangent space. A rigorous theory of local actions and their extensions to global actions is developed. The essential difference between the local and global cases is shown to be the associative law. The general theory is then applied, together with local Path and Homotopy Lifting Lemmas, to construct a local tangent space action without resorting the theorems from differential geometry. Various consequences of the local action are briefly discussed.
机译:在度量完整的局部紧凑内部度量空间的更一般的上下文中,考虑了黎曼几何的两个问题:(1)通过几何控制拓扑;(2)了解Gromov-Hausdorff极限的几何和拓扑。由于黎曼流形的极限是内部度量空间,其结构最近受到关注,这些问题引起了人们的关注。回顾了基本定义(包括有界曲率)和一些新的几何概念,包括测地线终点(通过该点可以大地测量无法继续)和大地测量的完整性(不存在大地测量终端)。建立了有界曲率且无测地线末端密集集T的空间X的局部拓扑结构:x是有边界的拓扑流形,并且;以上结果的应用是对简单连通空间形式的Cartan分类的概括,以及Cartan -Hadamard定理;也解决了由内部度量空间的Gromov-Hausdorff极限继承的几何特性。给出了曲率条件,可以用收敛空间中的测地线近似极限中的测地线;通过这样的近似,可以推导极限中的许多几何特性(例如,边界曲率,测地线完整性)。最后,以上第二段中描述的度量的“提升”会引起切线空间中的“局部作用”。建立了严格的地方行动理论及其对全球行动的扩展。地方和全球案件之间的本质区别被证明是关联法。然后,将一般理论与局部路径和同伦提升引理一起应用,以构造局部切线空间动作,而无需借助微分几何定理。简要讨论了当地行动的各种后果。

著录项

  • 作者

    Plaut, Conrad Peck.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号