首页> 外文学位 >Development of multi-scale, multi-physics, analysis capability and its application to novel heat exchangers design and optimization.
【24h】

Development of multi-scale, multi-physics, analysis capability and its application to novel heat exchangers design and optimization.

机译:多尺度,多物理场,分析能力的开发及其在新型换热器设计和优化中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Heat exchanger development using enhanced heat transfer surface designs and optimization techniques is a continuing effort that is constrained by current state of the art technology. Assessment of novel geometries and concepts are currently limited to experimental and numerical investigations on discrete levels. This dissertation aims at the advancement of the heat exchanger technology through the development of multi-scale multi-physics simulation tools for conventional and novel heat exchanger designs.;A unified heat exchanger design and optimization framework was developed. This framework integrates the multi-scale multi-physics simulation capabilities with previously developed approximation assisted optimization techniques. The optimized designs are then interpreted in order to provide design guidelines for next generation air-to-water heat exchangers. These capabilities required the development of: (a) generic epsilon -- NTU solver capable of analyzing the performance under geometrical variability, (b) systematic integration approach for CFD simulation at the segment level with the epsilon -- NTU solver at the heat exchanger level, (c) refrigerant distribution analysis tool. The developed simulation tools were verified numerically using systematic techniques adopted from literature and validated experimentally using measured data from a prototype heat exchanger. The structural integrity under conventional operating pressures of the novel heat exchanger design was analyzed using FEM for different tube materials and different wall thicknesses. Finally, existing single phase water flow in microtubes correlations were investigated numerically. The best matching correlation was selected for incorporation within the multi-scale simulation tool.;The approach described in this dissertation for the design and optimization of novel and conventional heat exchanger designs resulted in significant improvements over the current state of the art. Example performance improvements achieved in this dissertation show potential for 84 percent material savings and 61 percent volume savings for the same airside and refrigerant side pressure drop. The experimental investigations were in good agreement with the simulation results and demonstrated the superior performance of the novel design.
机译:使用增强的传热表面设计和优化技术的热交换器开发是一项持续的工作,受到当前技术水平的限制。目前,对新颖几何形状和概念的评估仅限于离散水平的实验和数值研究。本文旨在通过开发用于常规和新型换热器设计的多尺度多物理场仿真工具来发展换热器技术。该框架将多尺度多物理场仿真功能与以前开发的近似辅助优化技术集成在一起。然后解释优化的设计,以便为下一代空气-水热交换器提供设计指导。这些功能需要开发:(a)通用epsilon-NTU求解器,能够分析几何可变性下的性能;(b)用于段级CFD仿真的系统集成方法,在epsilon-NTU求解器在热交换器级别,(三)制冷剂分布分析工具。使用从文献中采用的系统技术对开发的仿真工具进行了数值验证,并使用了原型热交换器的测量数据进行了实验验证。对于不同的管材和不同的壁厚,使用FEM分析了新型换热器设计在常规操作压力下的结构完整性。最后,数值研究了微管中现有的单相水流相关性。选择了最佳匹配相关性,以将其纳入多尺度仿真工具中。本论文中描述的用于设计和优化新型和常规换热器设计的方法对现有技术进行了重大改进。本论文所实现的示例性能改进表明,在相同的空气侧和制冷剂侧压降下,可以节省84%的材料,节省61%的体积。实验研究与仿真结果吻合良好,证明了该新颖设计的优越性能。

著录项

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号