首页> 外文学位 >Development and application of an improved subgrid model for homogeneous turbulence.
【24h】

Development and application of an improved subgrid model for homogeneous turbulence.

机译:均质湍流改进子网格模型的开发与应用。

获取原文
获取原文并翻译 | 示例

摘要

As most of the fluids in nature are in turbulent motion, a considerable effort has been devoted to understanding turbulence using experimental, analytical, and numerical methods. With recent advances in computer technology, numerical simulations are currently on the leading edge of turbulence research. However, it will not be possible to resolve the entire spectrum of eddies in a high Reynolds number flow, even with the fastest foreseen computers. A more promising approach consists of explicitly simulating only the largest eddies of the flow, while employing an analytical subgrid model to simulate the effects of the smallest eddies. Previous subgrid models using an eddy viscosity have simulated the net subgrid scale energy transfer only as an energy transfer from the resolved scales to the unresolved subgrid scales. Two objections may be raised to the eddy viscosity model: first, physically, the energy transfer from the subgrid scales to the resolved scales is poorly represented, and; second, any physical effects which do not result in an energy transfer are omitted. A subgrid model that addresses these two objections is developed. First, only the energy transfer from the resolved to the subgrid scales is modeled as an eddy viscosity, whereas the energy transfer from the subgrid to the resolved scales is modeled as a stochastic force. Second, a new effect that does not result in an immediate energy transfer is modeled: the random sweeping of the smallest resolved eddies by the largest. Both the eddy viscosity and the stochastic force of the improved subgrid model are computed from an analytical model and from a direct numerical simulation. The simulation is found to validate the analytical model. The subgrid model is then applied to study: (1) the Kolmogorov inertial subrange; (2) the local and non-local energy fluxes across a given wavenumber, and; (3) the spectrum of a passive scalar field in the inertial-diffusive subrange. Future applications of the improved subgrid model to physically important problems in geophysical and astrophysical turbulence are proposed.
机译:由于自然界中的大多数流体都处于湍流中,因此已经投入大量精力来使用实验,分析和数值方法来理解湍流。随着计算机技术的最新发展,数值模拟目前处于湍流研究的前沿。但是,即使使用最快的预见计算机,也无法解决高雷诺数流中的整个涡旋谱。一种更有希望的方法包括仅显式模拟流中最大的涡流,同时采用分析子网格模型来模拟最小涡流的效果。先前使用涡流粘度的子网格模型仅将净子网格规模的能量传递模拟为从解析尺度到未解析子网格尺度的能量传递。涡流粘度模型可能引起两个反对意见:第一,从物理上讲,从次网格尺度到解析尺度的能量传递很难表示,并且;第二,省略了不会导致能量转移的任何物理效应。开发了解决这两个反对意见的子网格模型。首先,仅将能量从分解网格传递到子网格比例,将其建模为涡流粘度,而将能量从子网格传递到分解网格,并以随机力进行建模。其次,对不会导致立即能量转移的新效应进行了建模:最小分辨的涡旋被最大的分辨涡旋随机扫荡。改进的子网格模型的涡流粘度和随机力都是从解析模型和直接数值模拟中计算得出的。发现仿真可以验证分析模型。然后将子网格模型用于研究:(1)Kolmogorov惯性子范围; (2)在给定波数上的局部和非局部能量通量,以及; (3)惯性扩散子范围中无源标量场的频谱。提出了改进的子网格模型在地球物理和天体湍流中重要物理问题的未来应用。

著录项

  • 作者

    Chasnov, Jeffrey Robert.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Plasma physics.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号