首页> 外文学位 >Thermoplastic matrix composites via in situ electropolymerization.
【24h】

Thermoplastic matrix composites via in situ electropolymerization.

机译:通过原位电聚合的热塑性基体复合材料。

获取原文
获取原文并翻译 | 示例

摘要

A model electrochemical process for synthesizing thick thermoplastic matrix coatings of poly(maleimide(and N-substituted maleimides)-co-styrene) onto conductive graphite fiber reinforcements has been developed. This represents a new route to pre-impregnating graphite fibers with high performance thermoplastic matrices.; New and innovative methods of processing thermoplastic composites are needed to overcome the problem of inadequate wetting of individual graphite fiber strands in a fiber bundle of 3K or more filaments. Thermoplastic resins possess very high melt viscosity and cannot diffuse uniformly onto the fiber surfaces. The fibers are invariably poorly wetted resulting in poor adhesion between the reinforcement and the matrix. Thermoplastic matrices are also highly solvent resistant and can only dissolve in expensive high boiling solvents. The problems of solvent removal and the inability to wet individual fibers uniformly and the concomitant poor interfacial properties of the resulting graphite fiber-thermoplastic matrix composites underscores the need to invent new processing techniques. In-situ electrocopolymerization of thermoplastic matrices onto graphite fiber reinforcements enjoys the numerous advantages derived from electrochemical polymerization, such as excellent wettability of the fibers, very good control of coating thickness and matrix properties. Electropolymerization is very cost effective and easy to control. By adopting the electrochemical technique to apply advanced thermoplastic matrices directly onto conductive graphite fiber reinforcements, we overcome the major processing problems associated with the traditional hot melt and solution coating processes.; Electrochemical reduction of maleimides and N-substituted maleimides have only resulted in the formation of monomeric succinimide (MW {dollar}sim{dollar} 200), because of the hydrogenation of the ethylenic bond which terminates chain growth. In the present study electron deficient maleimides were electrochemically copolymerized with electron rich styrene comonomer. The resulting thermoplastic matrices were ideal for composite technology because of their intrinsic high thermal stability, TD {dollar}sim{dollar} 450{dollar}spcirc{dollar}C, and glass transition temperature {dollar}sim{dollar}220-270 {dollar}spcirc{dollar}C. The copolymer matrices also are easily and reversibly processable.; Aqueous electrocopolymerization of maleimides and styrene ensured a radical chain copolymerization and resulted in high molecular weight resins, Mn {dollar}sim{dollar} 65,000. High molecular weight resins are desirable for composite processing because of the associated improved properties.; Electrosynthesized prepregs composed of 35-65 {dollar}sp{lcub}rm w{rcub}{dollar}/o of resin were compression molded into composite panels. These composites showed excellent impact strength {dollar}sim{dollar}220 KJ/m{dollar}sp2{dollar}, very good flexural strength {dollar}sim{dollar}950-1700 MPa and moderate shear strength {dollar}sim{dollar}60 MPa.; In-situ interaction of the thermoplastic matrices with calculated amount of crosslinkable bismaleimide and a multifunctional system such as hydroxyethyl methacrylate (HEMA) respectively, have been attempted. It is recognized that a novel new process and high performance resin systems has been invented but aggressive development of the technology is imperative for commercial exploitation.
机译:已经开发了一种在电化学石墨纤维增强材料上合成聚(马来酰亚胺(和N-取代的马来酰亚胺)-共苯乙烯)厚热塑性基体涂层的电化学模型方法。这代表了用高性能热塑性基质预浸渍石墨纤维的新途径。需要新的和创新的加工热塑性复合材料的方法,以克服3K或更多个长丝纤维束中单个石墨纤维束未充分润湿的问题。热塑性树脂具有很高的熔体粘度,不能均匀地扩散到纤维表面上。纤维总是润湿性差,导致增强材料和基体之间的粘合性差。热塑性基质也具有很高的耐溶剂性,只能溶于昂贵的高沸点溶剂中。除去溶剂的问题以及不能均匀地润湿单个纤维的问题以及所得石墨纤维-热塑性基体复合材料伴随的较差的界面性能突出了对发明新加工技术的需求。热塑性基体在石墨纤维增强材料上的原位电共聚具有电化学聚合带来的众多优势,例如纤维的出色润湿性,非常好的涂层厚度和基体性能控制。电聚合非常具有成本效益并且易于控制。通过采用电化学技术将高级热塑性基质直接应用于导电石墨纤维增强材料,我们克服了与传统的热熔和溶液涂覆工艺相关的主要加工问题。由于烯键的氢化终止链增长,因此马来酰亚胺和N-取代的马来酰亚胺的电化学还原仅导致单体琥珀酰亚胺(MW {sim} {dollar} 200)的形成。在本研究中,缺电子的马来酰亚胺与富电子的苯乙烯共聚单体电化学共聚。所得的热塑性基体固有的高热稳定性,TD {dol} sim {dollar} 450 {dollar} spcirc {dollar} C和玻璃化转变温度{dollar} sim {dollar} 220-270 { Dollar} spcirc {dollar} C。共聚物基体也易于和可逆地加工。马来酰亚胺和苯乙烯的水电共聚确保了自由基链共聚,并得到了高分子量树脂,Mn {dollar} sim {dollar} 65,000。高分子量树脂由于其相关的改进性能而对于复合加工是理想的。将由35-65美元的树脂制成的电合成预浸料压制成复合板。这些复合材料显示出优异的冲击强度{dol} sim {dollar} 220 KJ / m {dollar} sp2 {dollar},非常好的弯曲强度{dollar} sim {dollar} 950-1700 MPa和中等剪切强度{dollar} sim {dollar } 60 MPa。已经尝试了热塑性基质分别与计算量的可交联双马来酰亚胺和多功能体系例如甲基丙烯酸羟乙酯(HEMA)的原位相互作用。公认的是,已经发明了新颖的新方法和高性能树脂系统,但是积极地开发该技术对于商业开发是必不可少的。

著录项

  • 作者

    Iroh, Jude Onwuegbu.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1990
  • 页码 297 p.
  • 总页数 297
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号