首页> 外文学位 >Fast subspace decomposition and its applications.
【24h】

Fast subspace decomposition and its applications.

机译:快速子空间分解及其应用。

获取原文
获取原文并翻译 | 示例

摘要

In the area of detection and estimation, there is a class of so-called signal subspace algorithms that has various applications in cellular/mobile communications, target tracking and signal estimation, system identification, ARMA modeling, adaptive filtering, among others. Though signal subspace algorithms have been shown to perform significantly better than the traditional least-squares methods, they are rarely implemented in real-time. The main reason is that they all incorporate the common key step of estimating the signal subspace, termed signal subspace decomposition, which is conventionally achieved by eigendecomposition (ED) or SVD. The ED or SVD of an M x M matrix requires at least O({dollar}Msp3{dollar}) multiplications which are quite significant for large M. They also involve global communication and significant amounts of local storage, properties that make VLSI parallel implementation difficult.; In this thesis, we present a class of Fast Subspace Decomposition (FSD) algorithms by exploiting the matrix structure associated with signal subspace algorithms. The new FSD techniques, based on the well-known Lanczos algorithm, require only O({dollar}Msp{lcub}2{rcub}d{dollar}) multiplications for an M x M matrix, where d is the dimension of the signal subspace. In the aforementioned applications, {dollar}Mll d{dollar} and FSD achieves an order of magnitude reduction in computational complexity. If the matrix under consideration has additional structure common in signal processing and communications, e.g., Toeplitz and Hankel, FSD can exploit it and achieve another order of magnitude computational reduction. New detection schemes for estimating d are also presented, which can be carried out during the process of signal subspace decomposition. More importantly, the FSD approach can be easily implemented in parallel using simple array processors, and the computation time can be reduced further to O(Md) or O(log Md) using O(M) or O({dollar}Msp2{dollar}) multipliers. The computational efficiency of FSD and its ease of implementation shed light on real-time implementations of various signal subspace algorithms.; Rigorous performance analysis FSD has also been carried out. Unlike many fast algorithms that trade performance for speed, the performance analysis shows that FSD has the same asymptotic performance as its more costly counterparts, ED and SVD, and that the new detection schemes are strongly consistent.
机译:在检测和估计领域,有一类所谓的信号子空间算法,在蜂窝/移动通信,目标跟踪和信号估计,系统识别,ARMA建模,自适应过滤等方面具有各种应用。尽管已显示信号子空间算法的性能明显优于传统的最小二乘法,但很少实时实现。主要原因是它们都包含了估计信号子空间的共同关键步骤,称为信号子空间分解,这通常是通过特征分解(ED)或SVD实现的。 M x M矩阵的ED或SVD至少需要O({Msp3 {dollar})乘法,这对于大M来说非常重要。它们还涉及全局通信和大量的本地存储,这些特性使VLSI可以并行实现难。;本文通过利用与信号子空间算法相关的矩阵结构,提出了一类快速子空间分解(FSD)算法。新的FSD技术基于著名的Lanczos算法,对于M x M矩阵仅需O({dollar} Msp {lcub} 2 {rcub} d {dollar})乘法,其中d是信号的维数子空间。在上述应用中,{Mll d {dollar}和FSD实现了计算复杂度的数量级降低。如果所考虑的矩阵具有信号处理和通信中常见的其他结构,例如Toeplitz和Hankel,则FSD可以利用它并实现另一个数量级的计算缩减。还提出了用于估计d的新检测方案,可以在信号子空间分解过程中执行该方案。更重要的是,FSD方法可以使用简单的阵列处理器轻松地并行实现,并且可以使用O(M)或O({dollar} Msp2 {dollar)将计算时间进一步减少到O(Md)或O(log Md) })乘数。 FSD的计算效率及其易于实现为各种信号子空间算法的实时实现提供了启示。严格的性能分析FSD也已进行。与许多以性能换取速度的快速算法不同,性能分析表明,FSD与更昂贵的ED和SVD具有相同的渐近性能,并且新的检测方案非常一致。

著录项

  • 作者

    Xu, Guanghan.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号