首页> 外文学位 >Modeling of a supersonic DC plasma torch system for carbon nanotube production.
【24h】

Modeling of a supersonic DC plasma torch system for carbon nanotube production.

机译:超音速直流等离子体炬系统用于碳纳米管生产的建模。

获取原文
获取原文并翻译 | 示例

摘要

The carbon nanotube (CNT) structure forms a very promising source material. It has unique properties such as high thermal and electrical conductivities, and a very high mechanical strength. In recent years, researchers were able to improve both the quantity and quality of the CNT production. Among the efforts made to scale up the production, Harbec and Meunier designed a new plasma torch process for the industrial production of CNT in bulk powder form. Their process is based on the DC plasma-jet pyrolysis of a carbon-containing gas. Experiments were conducted using either 100 slpm of argon or 225 slpm of helium. Tetrachloroethylene (C2Cl4, or TCE) was selected as the carbon raw material. The present work focuses on the modeling of this CNT synthesis process and aims at an understanding of the physical and chemical phenomena observed in this system. First, a description is made of the temperature and flow fields, as well as the species concentration distribution in the torch nozzle using both possibilities of He or Ar as the plasma gas. This is followed in the second part of the thesis by a model aimed to study the nucleation and evolution of the metal particles acting as catalyst for CNT growth in the nozzle. In the third part, the modeling of the TCE pyrolysis process in the flow was carried out.;A parametric study of the process is carried out and suggestions are made on the geometry of the reactor and the operating parameters for the formation of CNT. These modeling results suggest that the process can be optimized with carefully chosen operating parameters. With the specific design of the nozzle used here, it is recommended to operate at lower pressures in the reactor in order to avoid a backflow in the nozzle. Different kinds of metal catalyst can be used in this system and the reactor length should be adjusted accordingly in order to optimize the outcome of the process.;The fluid dynamics equations are used in this system showing supersonic characteristics. A realizable k-&egr; model is used to address the turbulent effects in the flow fields. The moment method is employed to calculate the formation of the fine catalyst particles from the metal vapor injected. Within the supersonic domain of the flow field, the influence of existing shock waves on the particle nucleation is discussed, as well as the chemical reactions involved. Results show that the supersonic phenomena make it possible for metal particles to nucleate and be maintained in small sizes. This however also causes a backflow in the nozzle, which partially contributes to the experimentally observed soot deposition and CNT growth within the nozzle. The carbon containing gas experiences a fast dissociation process once it enters the nozzle. The produced carbon species are maintained in small clusters of carbon atoms in the high temperature environment within the nozzle. These clusters and atoms serve as the source of CNT growth and form a layer of carbon deposit on the surface of the nozzle. This deposited layer acts as a thermal insulator changing the conditions in the nozzle, particularly on the wall. A modeling of this effect is performed, confirming that the basic requirements for CNT growth are attained within the nozzle itself.
机译:碳纳米管(CNT)结构形成了非常有前途的原材料。它具有独特的特性,例如高导热性和导电性,以及很高的机械强度。近年来,研究人员能够提高CNT生产的数量和质量。在扩大生产规模的努力中,Harbec和Meunier设计了一种新的等离子炬工艺,用于工业生产散装粉末状的CNT。他们的过程基于含碳气体的直流等离子体喷射热解。使用100 slpm的氩气或225 slpm的氦气进行实验。选择四氯乙烯(C2Cl4或TCE)作为碳原料。本工作着重于此CNT合成过程的建模,旨在了解在此系统中观察到的物理和化学现象。首先,对使用He或Ar作为等离子体气体的情况下的温度和流场以及焊炬喷嘴中的物质浓度分布进行描述。在论文的第二部分中,接下来是一个模型,该模型旨在研究充当喷嘴中CNT生长催化剂的金属颗粒的形核和演化。在第三部分中,对TCE热解过程进行了建模。;对该过程进行了参数研究,并对反应器的几何形状和形成CNT的操作参数提出了建议。这些建模结果表明,可以通过精心选择的操作参数来优化过程。对于此处使用的喷嘴的特定设计,建议在反应器中以较低的压力运行,以避免喷嘴中的回流。该系统中可以使用不同种类的金属催化剂,并且应相应地调整反应器长度,以优化工艺结果。在该系统中,使用了流体动力学方程式,以显示超音速特性。可实现的k-&egr;该模型用于解决流场中的湍流效应。采用矩量法来计算由注入的金属蒸气形成的催化剂细颗粒。在流场的超音速域中,讨论了现有冲击波对粒子成核的影响以及所涉及的化学反应。结果表明,超音速现象使金属颗粒成核并保持较小尺寸成为可能。但是,这也会在喷嘴中引起回流,这部分地有助于实验观察到的烟灰沉积和喷嘴内CNT的生长。含碳气体进入喷嘴后会经历快速离解过程。产生的碳物质在喷嘴内的高温环境中保持在小的碳原子簇中。这些簇和原子充当CNT生长的来源,并在喷嘴表面上形成一层碳沉积物。该沉积层用作热绝缘体,改变喷嘴中,特别是壁上的条件。对该效果进行了建模,确认在喷嘴本身内达到了CNT生长的基本要求。

著录项

  • 作者

    Guo, Liping.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号