首页> 外文学位 >Analysis of solar and microwave thermal propulsion systems.
【24h】

Analysis of solar and microwave thermal propulsion systems.

机译:太阳能和微波热推进系统分析。

获取原文
获取原文并翻译 | 示例

摘要

Theoretical models are developed to assess the conceptual feasibility of employing solar and microwave energy to heat a propellant gas and generate thrust. Both these advanced electrothermal propulsion concepts promise high specific impulses and are, therefore, being considered as alternatives to chemical propulsion for space-based applications. The present research addresses two major feasibility issues: (1) the efficient coupling of electromagnetic energy to the propellant, and (2) the performance capabilities of these systems.; Physical modeling of the direct absorption of solar radiation in gases involves the solution of the thermal radiation problem within the thruster. The absorption of the incident beam is modeled by a ray-tracing technique while the reradiation of the heated gas is treated by a thick-thin model. The thick-thin model is calibrated by the P-1 model and an exact integral method. Spectral dependence of the radiative properties is handled by a band model. Results for different thruster sizes indicate that high energy conversion efficiencies are possible if a combination of direct and indirect heating is used; part of the incident radiation is absorbed directly by the gas while the remainder is absorbed on a regeneratively cooled wall. Performance predictions for the thruster indicate specific impulses in the range of 500 to 650 s for moderate gas pressures (1 to 10 atm); at higher pressures, better performance is possible but structural considerations are likely to play a limiting role.; The analysis of the microwave problem involves the coupled solution of the Navier-Stokes equations for the gasdynamics and the Maxwell equations for the microwaves. Time-marching techniques are employed for the solution of both equation sets. Local thermal equilibrium is assumed for the plasma. Computational results are in good agreement with experimental data for resonant cavity plasmas--peak plasma temperatures are between 9000 and 10,000 K and high coupling efficiencies (up to 100%) are predicted. Parametric studies are performed to extend the results to high power and high pressure regimes.
机译:开发了理论模型以评估利用太阳能和微波能量加热推进剂气体并产生推力的概念可行性。这两种先进的电热推进概念都具有较高的比冲,因此被认为是空间应用中化学推进的替代方案。本研究解决了两个主要的可行性问题:(1)电磁能与推进剂的有效耦合;(2)这些系统的性能。气体中太阳辐射直接吸收的物理模型涉及解决推进器内的热辐射问题。入射光束的吸收通过射线追踪技术进行建模,而加热气体的再辐射通过薄模型进行处理。厚薄模型通过P-1模型和精确积分方法进行校准。辐射特性的光谱依赖性由波段模型处理。不同推力器尺寸的结果表明,如果结合使用直接加热和间接加热,则可能具有较高的能量转换效率。一部分入射辐射直接被气体吸收,而其余部分则被吸收在再生冷却的壁上。对于推进器的性能预测表明,在中等气压(1至10个大气压)下,特定脉冲在500至650 s范围内;在较高的压力下,可能会有更好的性能,但结构上的考虑可能会起到限制作用。微波问题的分析涉及气体动力学的Navier-Stokes方程和微波的Maxwell方程的耦合解。时间行进技术用于解决两个方程组。假定等离子体的局部热平衡。计算结果与谐振腔等离子体的实验数据非常吻合-峰值等离子体温度在9000 K和10,000 K之间,并且可以预测出高耦合效率(高达100%)。进行参数研究可将结果扩展到高功率和高压状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号