首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference exhibit >Phase-Change Thermal Energy Storage and Conversion: Development and Analysis for Solar Thermal Propulsion
【24h】

Phase-Change Thermal Energy Storage and Conversion: Development and Analysis for Solar Thermal Propulsion

机译:相变热能存储和转换:太阳能热推进的发展与分析

获取原文

摘要

Solar thermal propulsion offers a unique combination of high thrust and high specific impulse that can provide competitive advantages relative to traditional satellite propulsion systems. Enhancing the functionality of this technology will require a robust thermal energy storage method that can be combined with a means of thermal-to-electric conversion (i.e. thermophotovoltaic cells). This combination creates a high performance dual mode power and propulsion system that can eliminate the traditional photovoltaic-battery combination on existing satellites. A thermal energy storage system based on the phase change of molten elemental materials is proposed as the enabling technology. Molten boron is identified as the optimal phase change material (PCM), but presents significant engineering challenges. Thus, molten silicon is proposed as a near term, moderate performance storage option. A systems level comparison against existing technologies shows that both thermal storage materials present a performance benefit versus current technological benchmarks, and with optimistic future assumptions, it appears that a boron-based system can provide a ΔV improvement of more than 40% while maintaining rapid satellite maneuverability. An ongoing experimental effort is focused on producing a proof of concept thermal energy storage system. Materials testing has determined the stability of boron nitride in the presence of molten silicon in the short term, and solar furnace testing has resulted in silicon melting for the first time. Testing of the solar furnace using copper as a surrogate PCM has revealed experimental concerns with PCM heat transfer rates and has resulted in a design for a new full scale solar furnace. This furnace will operate at scales that are relevant to spacecraft development.
机译:太阳热推进提供了高推力和高比冲的独特组合,与传统的卫星推进系统相比,可以提供竞争优势。增强该技术的功能将需要一种可靠的热能存储方法,该方法可以与热电转换手段(即热光伏电池)结合使用。这种组合创建了一个高性能的双模电源和推进系统,可以消除现有卫星上的传统光伏电池组合。提出了一种基于熔融元素材料相变的热能存储系统作为使能技术。熔融硼被认为是最佳的相变材料(PCM),但提出了重大的工程挑战。因此,提出了熔融硅作为近期,中等性能的存储选择。系统水平与现有技术的比较表明,两种储热材料均具有优于当前技术基准的性能优势,并且在乐观的未来假设下,基于硼的系统似乎可以在保持快速卫星运行的同时,将ΔV提高40%以上可操作性。正在进行的实验工作集中在生产概念验证的热能存储系统上。材料测试已在短期内确定了氮化硼在熔融硅存在下的稳定性,而太阳能炉测试首次导致了硅的熔化。使用铜作为替代PCM的太阳能炉的测试显示了与PCM传热速率有关的实验问题,并导致了新型全尺寸太阳能炉的设计。该熔炉将以与航天器开发相关的规模运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号