首页> 外文学位 >Study of catalysis for solid oxide fuel cells and direct methanol fuel cells.
【24h】

Study of catalysis for solid oxide fuel cells and direct methanol fuel cells.

机译:固体氧化物燃料电池和直接甲醇燃料电池的催化研究。

获取原文
获取原文并翻译 | 示例

摘要

Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading.For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a typical solid oxide electrolyte, with patterned (octadecyltrichlorosilane) ODTS self-assembled monolayers (SAMs), Pt thin films were grown selectively on the SAM-free surface regions. Features with sizes as small as 2 mum were deposited by this combined ALD-muCP method. The micro-patterned Pt structure deposited by area selective ALD was applied to SOFCs as a current collector grid/patterned catalyst. An improvement in the fuel cell performance by a factor of 10 was observed using the Pt current collector grids/patterned catalyst integrated onto cathodic La0.6Sr 0.4Co0.2Fe0.8O3-delta.For possible catalytic anodes in DMFCs employing a 1:1 stoichiometric methanol-water reforming mixture, two strategies were employed in this thesis. One approach is to fabricate skin catalysts, where ALD Pt films of various thicknesses were used to coat sputtered Ru films forming Pt skin catalysts for study of methanol oxidation. Another strategy is to replace or alloy Pt with Ru for this effort, both dc-sputtering and atomic layer deposition were employed to fabricate Pt-Ru catalysts of various Ru contents. The electrochemical behavior of all of the Pt skin catalysts, the DC co-sputtered Pt-Ru catalysts and the ALD co-deposited Pt-Ru catalysts were evaluated at room temperature for methanol oxidation using cyclic voltammetry and chronoamperometry in highly concentrated 16.6 M MeOH, which corresponds to the stoichiometric fuel that will be employed in next generation DMFCs that are designed to minimize or eliminate methanol crossover. The catalytic activity of sputtered Ru catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin layer catalysts displaying superior catalytic activity over pure Pt. For both the DC co-sputtered catalysts and ALD co-deposited catalysts, the electrochemical studies illustrate that the optimal stoichiometry ratio for Pt to Ru is approximately 1:1, which is in good agreement with most literature.
机译:燃料电池提供了更清洁电力的诱人前景,与传统能源转换技术相比,对环境的影响更低。在对便携式电子电源以及分布式发电和汽车推进市场的兴趣驱使下,固体氧化物燃料电池(SOFC)和直接甲醇燃料电池(DMFC)装置技术的积极开发努力取得了重大进展。然而,当前用于燃料电池的催化剂要么催化活性低要么极其昂贵,这成为燃料电池装置广泛商业化的主要障碍。在这篇论文中,原子层沉积(ALD)是一种新颖的薄膜沉积技术,用于将催化性Pt应用于SOFC,并研究了Pt皮催化剂和Pt-Ru催化剂对甲醇氧化(DMFC的重要反应,为了提高催化剂的活性和利用率,同时降低催化剂的负载量。对于SOFC,我们探索了ALD在电极组件制造中的应用,包括用作电催化剂的超薄Pt膜和Pt筛网SOFC的集电器的结构,旨在精确控制催化剂的负载和催化剂的几何形状,并提高集电效率。我们选择Pt是因为它具有很高的化学稳定性,并且即使在较低的工作温度下,对O2还原反应和H2氧化反应也具有出色的催化活性。工作的SOFC燃料电池是用ALD沉积的Pt薄膜作为电极/催化剂层制造的。测得的燃料电池性能表明,ALD沉积的Pt阳极达到了可比的峰值功率密度,相对于DC溅射的阳极只有五分之一的Pt负载。除了连续的电催化剂层,还通过区域选择性ALD技术开发了微图案化的Pt结构。通过用图案化的(十八烷基三氯硅烷)ODTS自组装单层(SAMs)涂覆氧化钇稳定的氧化锆(一种典型的固体氧化物电解质),在无SAM的表面区域上选择性地生长Pt薄膜。通过这种组合的ALD-muCP方法沉积的尺寸小至2毫米的特征。通过面积选择性ALD沉积的微图案Pt结构作为集电器网格/图案化催化剂应用于SOFC。使用集成在阴极La0.6Sr 0.4Co0.2Fe0.8O3-delta上的Pt集流栅/图案化催化剂,观察到燃料电池性能提高了10倍。对于采用1:1化学计量比的DMFC中可能的催化阳极甲醇-水重整混合物,本文采用两种策略。一种方法是制造皮肤催化剂,其中使用各种厚度的ALD Pt膜涂覆溅射的Ru膜,形成形成Pt皮肤催化剂的Ru膜,用于研究甲醇氧化。另一种策略是为此目的用Ru代替Pt或用Ru合金化,同时采用直流溅射和原子层沉积来制造各种Ru含量的Pt-Ru催化剂。在室温下使用循环伏安法和计时安培法在高浓度16.6 M MeOH中对所有Pt皮层催化剂,DC共溅射Pt-Ru催化剂和ALD共沉积Pt-Ru催化剂的电化学行为进行了甲醇氧化评估。它对应于将在下一代DMFC中使用的化学计量燃料,该DMFC旨在最小化或消除甲醇的交换。 ALD Pt覆盖层大大增强了溅射Ru催化剂对甲醇氧化的催化活性,这种表层催化剂显示出优于纯Pt的催化活性。对于DC共溅射催化剂和ALD共沉积催化剂,电化学研究表明Pt与Ru的最佳化学计量比约为1:1,这与大多数文献都很好地吻合。

著录项

  • 作者

    Jiang, Xirong.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Chemical.Engineering Materials Science.Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 287 p.
  • 总页数 287
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号