首页> 外文学位 >Shock wave propagation in renal calculi in extracorporeal shock wave lithotripsy.
【24h】

Shock wave propagation in renal calculi in extracorporeal shock wave lithotripsy.

机译:冲击波在肾结石中传播,在体外冲击波碎石术中。

获取原文
获取原文并翻译 | 示例

摘要

Extracorporeal shock wave lithotripsy (ESWL) has become the primary treatment modality for urinary stone removal. Impact of cavitation microjets formed from the collapsing bubbles near stone surfaces has been suggested to be an important mechanism for stone fragmentation. A better understanding of the transient jet-stone interaction, and the propagation of resulting shock waves in the stones, however, is needed.;Using geometrical acoustics, a model for the impingement of cavitation microjet on elastic boundaries and the propagation of the resulting shock waves in the solids was developed. Compared with previous studies, this model provides a complete and general solution for the jet impact problem.;Longitudinal and shear wave speeds for four major types of renal calculi were measured using an ultrasound transmission technique. The densities of the stones were also measured by a pycnometer based on Archimedes' principle. From these, the wave impedances, Young's and shear moduli, as well as Poisson's ratio of the stones were determined.;With the material properties of the stone determined, the model was used to calculate the jet impact pressure at the boundary of a renal calculus and the stress and strain at the propagating shock fronts. Compared with stone material strengths, the model predictions show that damages are most likely to occur at (1) the jet impacting surface of the stone due to the repeated impingements of cavitation microjets and (2) at the back surface of the stone due to reflected tensile waves. The model predictions also agree with experimental results using stone phantoms and clinical experiences of the stone fragility.;Results from this study should help us better understand the mechanism of stone fragmentation in ESWL and improve the design of lithotripters as well as the treatment strategy for non-invasive stone removal.
机译:体外冲击波碎石术(ESWL)已成为去除尿结石的主要治疗方法。有人认为,由靠近石材表面坍塌的气泡形成的空化微射流的冲击是造成石材碎裂的重要机制。但是,需要更好地了解瞬态射流与岩石的相互作用以及由此产生的冲击波在岩石中的传播。;使用几何声学,一种将空化微射流撞击在弹性边界上的模型以及由此产生的冲击的传播固体中产生了波浪。与以前的研究相比,该模型为射流撞击问题提供了一个完整的通用解决方案。使用超声传输技术测量了四种主要类型的肾结石的纵向和横波速度。石头的密度也通过基于阿基米德原理的比重瓶测量。由此确定了结石的波阻抗,杨氏模量和剪切模量以及泊松比。;在确定了结石的材料特性之后,该模型用于计算肾结石边界处的射流冲击压力以及传播的冲击前沿的应力和应变。与石头材料的强度相比,模型预测表明,损坏最可能发生在(1)由于空化微射流的反复撞击而在石头的射流撞击表面上造成的损坏,以及(2)由于反射而在石头的背面处发生的损坏拉伸波。该模型的预测结果也与使用石模体的实验结果和石脆性的临床经验相吻合。该研究的结果应有助于我们更好地了解ESWL中石块碎裂的机理,并改善碎石机的设计以及非碎石治疗方法-去除结石。

著录项

  • 作者

    Zhong, Pei.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Applied Mechanics.;Engineering Biomedical.;Health Sciences Medicine and Surgery.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号