首页> 外文学位 >Surface directed electrokinetic flows in microfluidic devices.
【24h】

Surface directed electrokinetic flows in microfluidic devices.

机译:微流体装置中的表面定向电动流。

获取原文
获取原文并翻译 | 示例

摘要

Electroosmotic flow control in microfluidic devices is an important and challenging problem, as electroosmosis directly influences separation efficiencies in lab-on-chip applications. In this study, a non-mechanical passive flow directing method is presented for electrokinetically driven flow. Due to the high surface-area-to-volume (SA/V) ratio, surface properties dominate the flow in microfluidic channels. For electrokinetically driven flows, the main surface property affecting electroosmotic flows is the surface zeta potential, which is related to the effective surface charge density. By changing the effective surface charge density, the electroosmotic flow rates of charged species can be controlled in microfluidic channels. In this work, to change the effective surface charge density, surfaces were chemically modified with --Br, --NH2 and --CH3 functional groups by 'click' chemistry. Since these functional surface layers are integrated within model glass microfluidic devices prepared by standard microfabrication procedures, the first step was to investigate the stability of the adherent surface layers to a variety of microfabrication conditions. A model "Y" shaped glass microfluidic device was developed. One leg of this model microfluidic device was selectively chemically modified to alter the zeta potential and thereby increase or decrease the electroosmotic flow with respect to rest of the device. Electroosmotic flow is visualized by using marker dyes under a fluorescent microscope. In addition, experiments were validated by using the CFD code in COMSOL. The experiments concluded that the surface layers are stable to a variety of conditions including a wide pH range (pH 3--pH 11), solvent exposure, acid and base exposure, and UV light. Extreme conditions such as a piranha solution or oxidative plasma degrade the surface layers. Electrokinetic flow experiments show that depending on the charge of a species the electroosmotic flow is preferentially directed as a function of the zeta potential in the microfluidic channels.
机译:微流控设备中的电渗流控制是一个重要且具有挑战性的问题,因为电渗直接影响芯片实验室应用中的分离效率。在这项研究中,提出了一种非机械的被动流动引导方法,用于电动驱动的流动。由于高的表面积/体积(SA / V)比,表面特性主导着微流体通道中的流动。对于电动驱动的流体,影响电渗流的主要表面特性是表面zeta电位,这与有效的表面电荷密度有关。通过改变有效表面电荷密度,可以在微流体通道中控制带电物质的电渗流速。在这项工作中,为了改变有效的表面电荷密度,通过“点击”化学方法对表面进行了化学修饰,包括-Br,-NH2和-CH3官能团。由于这些功能性表面层已集成在通过标准微细加工程序制备的模型玻璃微流体装置中,因此第一步是研究粘附的表面层在各种微细加工条件下的稳定性。开发了“ Y”型玻璃微流体装置。该模型微流体装置的一条腿被选择性地化学修饰以改变zeta电位,从而相对于装置的其余部分增加或减少电渗流量。通过在荧光显微镜下使用标记染料可视化电渗流。另外,通过使用COMSOL中的CFD代码验证了实验。实验得出的结论是,这些表面层在多种条件下均很稳定,包括宽的pH范围(pH 3--pH 11),溶剂暴露,酸和碱暴露以及紫外线。食人鱼溶液或氧化性等离子体等极端条件会使表面层退化。电动流动实验表明,取决于物质的电荷,电渗流优先根据微流体通道中的ζ电势定向。

著录项

  • 作者

    Karacor, Mehmet Basar.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号