首页> 外文学位 >Time-optimal multi-axis attitude maneuvers of rigid spacecraft using collocation and nonlinear programming.
【24h】

Time-optimal multi-axis attitude maneuvers of rigid spacecraft using collocation and nonlinear programming.

机译:刚性航天器的时间最优多轴姿态机动利用并置和非线性规划。

获取原文
获取原文并翻译 | 示例

摘要

Spacecraft attitude control is an important aspect of satellite technology; in particular, time-optimal maneuvers are critical in military applications, communications satellites, and for scientific flyby missions. Although the problem is fairly easy to formulate, it has proved nearly impossible to solve, either numerically or analytically except in a few simplified cases. The thesis begins with a comprehensive survey of the literature of the last thirty years, from early attempts to solve the time-optimal reorientation problem to the latest approaches applied to flexible spacecraft. The background and details of a particular solution method, collocation and nonlinear programming, are discussed in detail. The discussion concludes with application and usage notes for using this method to solve time-optimal attitude maneuver problems. Applying the method of collocation and nonlinear programming to these maneuvers yields the solution of several classes of problems which have not been solvable by other means. This method has several advantages over traditional methods of solution: it is straightforward to formulate, it is easy to use and to modify, requires low computation times, and is extraordinarily robust with respect to the initial guess used to obtain a solution. The results obtained using this method are compared to known solutions, and show excellent agreement with them. Solutions for several additional spacecraft configurations and different maneuvers are presented, including rest-to-rest reorientations, detumble, and spin-up motions. The thesis concludes with a brief discussion of future developments for the method and the types of problems to which it might be applied.
机译:航天器姿态控制是卫星技术的重要方面。特别是在军事应用,通信卫星以及科学飞行任务中,时间最优的演习至关重要。尽管这个问题很容易提出,但事实证明,除了少数几种简化的情况外,无论从数值还是分析上都几乎不可能解决。本文从对过去三十年文献的全面调查开始,从解决时间最优定向问题的早期尝试到应用于柔性航天器的最新方法。详细讨论了特定解决方法,并置和非线性规划的背景和细节。讨论以使用此方法解决时间最优姿态操纵问题的应用和使用说明结束。将搭配和非线性规划方法应用到这些演算中,可以解决其他方法无法解决的几类问题。与传统的求解方法相比,该方法具有多个优点:公式简单,易于使用和修改,需要较少的计算时间,并且对于用于获得求解的初始猜测而言非常健壮。使用此方法获得的结果与已知解决方案进行比较,并显示出极好的一致性。提出了几种其他航天器配置和不同操纵方式的解决方案,包括静止到静止的重新定向,减速和旋转运动。本文最后简要讨论了该方法的未来发展以及可能应用的问题类型。

著录项

  • 作者

    Scrivener, Sandra Lynn.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:50:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号