首页> 外文学位 >Photoelectrochemical characterization of III-V semiconductors utilizing impedance spectroscopy methods.
【24h】

Photoelectrochemical characterization of III-V semiconductors utilizing impedance spectroscopy methods.

机译:利用阻抗光谱法对III-V半导体进行光电化学表征。

获取原文
获取原文并翻译 | 示例

摘要

The thermodynamic reversible potential required to decompose water into hydrogen and oxygen is about 1.23 eV. An overpotential of 100-400 mV may have to be overcome at the semiconductor/electrolyte interface to successfully photo-electrolyze water. An optimal bandgap of a semiconductor utilized in photoelectrolysis of water would be in the range 1.6-2.0 eV. Single crystal GaInP{dollar}sb2{dollar}, (Eg = 1.83 eV) and Ga{dollar}sb{lcub}rm 1-x{rcub}{dollar}Al{dollar}sb{lcub}rm x{rcub}{dollar}As (Eg = 1.5-1.8 eV), Ga{dollar}sb{lcub}rm 1-x{rcub}{dollar}Al{dollar}sb{lcub}rm x{rcub}{dollar}As with embeded single quantum wells of GaAs, Ga{dollar}sb{lcub}rm x{rcub}{dollar}As{dollar}sb{lcub}rm 1-x{rcub}{dollar}P, Ga{dollar}sb{lcub}rm x{rcub}{dollar}Al{dollar}sb{lcub}rm y{rcub}{dollar}In1-x-yP, GaAs and InP grown epitaxially in a MOCVD reactor (at NREL) were the subject of this study since, by virtue of their bandgaps, they show promise of being capable of photodecomposition of water in the absence of an external bias. These materials were studied when immersed in various aqueous electrolyte solutions of different pHs. Electrochemical impedance spectroscopy (EIS) was used to investigate the semiconductor-electrolyte interface, which was modeled using an equivalent electrical circuit analog that represented the physical phenomena. Based on the space-charge layer capacitance, the flat-band potential and hence, the corresponding position of band edges relative to the hydrogen and oxygen redox levels were determined. Capacitance measurements, current-voltage measurements and photocurrent spectroscopy were also carried out on these interfaces. Based on favorable results obtained for GaInP{dollar}sb2{dollar}, a tandem cell structure consisting of GaInP{dollar}sb2{dollar} and GaAs was utilized in photoelectrolysis of water in acidic solutions and efficiencies of 7-14% reported.
机译:将水分解成氢和氧所需的热力学可逆势约为1.23 eV。在半导体/电解质界面处必须克服100-400 mV的过电势,才能成功地光电解水。用于水的光电解的半导体的最佳带隙将在1.6-2.0eV的范围内。单晶GaInP {dollar} sb2 {dollar}(例如= 1.83 eV)和Ga {dollar} sb {lcub} rm 1-x {rcub} {dollar} Al {dollar} sb {lcub} rm x {rcub} {美元} As(例如= 1.5-1.8 eV),Ga {dollar} sb {lcub} rm 1-x {rcub} {dollar} Al {dollar} sb {lcub} rm x {rcub} {dollar}与嵌入单GaAs,Ga {dollar} sb {lcub} rm x {rcub} {dollar} As {dollar} sb {lcub} rm 1-x {rcub} {dollar} P,Ga {dollar} sb {lcub} rm的量子阱x {rcub} {dollar} Al {dollar} sb {lcub} rm y {rcub} {dollar} In1-x-yP,在MoCVD反应器(在NREL)外延生长的GaAs和InP是本研究的主题,因为,由于其带隙,它们显示出在没有外部偏压的情况下能够光分解水的前景。当将这些材料浸入不同pH的各种电解质水溶液中时,进行了研究。电化学阻抗谱(EIS)用于研究半导体-电解质界面,该界面使用代表物理现象的等效电路模拟物进行建模。基于空间电荷层电容,可以确定平带电势,从而确定带边缘相对于氢和氧的氧化还原水平的相应位置。在这些接口上也进行了电容测量,电流-电压测量和光电流光谱学。基于GaInP {dollar} sb2 {dollar}的良好结果,由GaInP {dollar} sb2 {dollar}和GaAs组成的串联电池结构被用于酸性溶液中水的光电解,效率为7-14%。

著录项

  • 作者

    Kocha, Shyam Sunder.;

  • 作者单位

    University of Hawai'i.;

  • 授予单位 University of Hawai'i.;
  • 学科 Engineering Materials Science.; Physics Condensed Matter.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 333 p.
  • 总页数 333
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号