首页> 外文学位 >A Higher-Order Flamelet Model for Turbulent Combustion Simulations.
【24h】

A Higher-Order Flamelet Model for Turbulent Combustion Simulations.

机译:用于湍流燃烧模拟的高阶小火焰模型。

获取原文
获取原文并翻译 | 示例

摘要

Current projection of energy consumption trends has shown that combustion of fossil fuel will continue to play an important role in industrial thermal processes, power generation, and transportation for a substantial period. In order for these sectors to sustain under the finite fossil fuel reserves, improvements in existing devices and development of novel concepts that emphasize on energy efficiency are necessary. Numerical simulations can be used to address this need, in particular by complementing experiments with extensive and quick parametric studies. However, this is only viable if numerical predictions of the combustion processes are accurate, which requires adequate modeling of the multi-physics phenomena in turbulent reacting flows.;In this work, the flamelet-type combustion model, one of the most widely used approaches for turbulent reacting flow simulations, is thoroughly analyzed in terms of the validity of its underlying assumptions and limitations in its description of different combustion regimes. Diagnostic tools that account for the flamelet formulation are developed and applied to two different direct numerical simulation (DNS) results. These analyses show that the omission of the higher-order and unsteady flamelet effects by most conventional flamelet models is not valid in realistic configurations that are characterized by complex vortical structures, flame extinction and reignition, and turbulence-chemistry interactions.;Following these findings, a higher-order flamelet model that describes the conventionally omitted flamelet effects is developed for large-eddy simulations (LES) applications. This model is based on the physical interpretation of flamelets as quasi one-dimensional structures in the turbulent flow, and the consideration of the effects that the spatial-filtering in LES methodology has on these structures. The model is applied in LES of a turbulent counterflow diffusion flame configuration, demonstrating improved agreement with the reference DNS solutions of the same case than the steady flamelet/progress variable (FPV) and laminar approximation models.
机译:当前对能源消耗趋势的预测表明,化石燃料的燃烧将在相当长的一段时间内继续在工业热过程,发电和运输中发挥重要作用。为了使这些部门能够维持在有限的化石燃料储量之下,有必要对现有设备进行改进并开发强调能源效率的新颖概念。数值模拟可用于满足此需求,特别是通过对实验进行广泛而快速的参数研究来补充。但是,这仅在燃烧过程的数值预测准确的情况下才可行,这需要对湍流反应流中的多物理现象进行适当的建模。在这项工作中,小火焰型燃烧模型是使用最广泛的方法之一对于湍流反应流模拟,将根据其基本假设的有效性以及在描述不同燃烧状态时的局限性对其进行全面分析。开发了解决火焰形成问题的诊断工具,并将其应用于两个不同的直接数值模拟(DNS)结果。这些分析表明,大多数常规小火焰模型忽略了高阶和不稳定的小火焰效应,在以复杂的旋涡结构,火焰的熄灭和重燃以及湍流-化学相互作用为特征的现实配置中是无效的。针对大涡模拟(LES)应用开发了描述传统上省略的火焰效应的高阶火焰模型。该模型基于小流作为湍流中准一维结构的物理解释,并考虑了LES方法中空间滤波对这些结构的影响。该模型应用于湍流逆流扩散火焰构型的LES中,与稳定小火焰/进展变量(FPV)和层状逼近模型相比,证明与相同情况下的参考DNS解决方案具有更好的一致性。

著录项

  • 作者

    Chan, Wai Lee.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号