首页> 外文学位 >UV/ozone induced oxidation of silicon(1-x) germanium(x) alloys and thermal desorption of the oxide film.
【24h】

UV/ozone induced oxidation of silicon(1-x) germanium(x) alloys and thermal desorption of the oxide film.

机译:UV /臭氧诱导硅(1-x)锗(x)合金的氧化和氧化膜的热脱附。

获取原文
获取原文并翻译 | 示例

摘要

This research project examines the fundamental issues associated with UV/ozone induced oxidation of Si{dollar}sb{lcub}rm 1-x{rcub}{dollar}Ge{dollar}sb{lcub}rm x{rcub}{dollar} alloys and thermal desorption of the oxide film. A low temperature technique has been demonstrated for cleaning Ge wafer surfaces for the growth of high quality epitaxial films. Using x-ray photoelectron spectroscopy (XPS) and other techniques, it is shown that 30 min exposures of a degreased and deionized-water-rinsed Ge wafer to ultraviolet (UV) emission from a Hg lamp in laboratory air is sufficient to remove C contamination and form a non-permeable passive amorphous GeO{dollar}sb2{dollar} layer with a thickness of {dollar}sim{dollar}3 nm. Subsequent annealing in ultrahigh vacuum (UHV) at {dollar}>{dollar}400{dollar}spcirc{dollar}C resulted in desorption of the oxide layer leaving behind a clean well-ordered Ge surface with no C or O impurities. Si{dollar}sb{lcub}rm 1-x{rcub}{dollar}Ge{dollar}sb{lcub}rm x{rcub}{dollar} alloy films with different Ge fractions, grown epitaxially by molecular beam epitaxy (MBE) on Si (111) substrates, were oxidized by exposure to UV-ozone for different times. This resulted in the growth of a uniform oxide film containing both Si and Ge in the +4 state. The oxide thickness initially increased rapidly but reached a saturation value. This varied from 1.3 to 3 nm for Ge fractions of 0 to 100% in the semiconductor alloy. This behavior is consistent with the existence of a space charge region resulting from photo-excitation of electrons from the SiGe valence band into the oxide. The photoelectrons assist in ionizing surface oxygen, a critical step in the oxidation reaction.; The desorption kinetics of the GeO{dollar}sb2{dollar} film was studied using temperature programmed desorption (TPD) and isothermal annealing in the XPS instrument. The desorption took place over a narrow temperature span {dollar}<{dollar}10{dollar}spcirc{dollar}C at {dollar}sim{dollar}400{dollar}spcirc{dollar}C. The XPS spectra of the Ge 3d peak during desorption showed no increase in the GeO signal even though GeO is the desorbing species. Isothermal annealing experiments confirmed that the oxide film desorbs abruptly at around 400{dollar}spcirc{dollar}C. The oxide desorption does not take place by a layer-by-layer process. It is proposed that desorption is accomplished by the formation of holes in the film, and behaves as a nucleation-limited process.
机译:该研究项目研究了与紫外线/臭氧诱导的Si {dollar} sb {lcub} rm 1-x {rcub} {dollar} Ge {dollar} sb {lcub} rm x {rcub} {dollar}合金氧化有关的基本问题和氧化膜的热脱附。已经证明了用于清洁Ge晶片表面以生长高质量外延膜的低温技术。使用X射线光电子能谱(XPS)和其他技术,已证明去脂和去离子水冲洗过的Ge晶片在实验室空气中暴露于Hg灯的紫外线(UV)照射30分钟足以去除C污染并形成厚度为3纳米的非渗透性被动非晶GeO sb 2。随后在{美元}> {美元} 400 {美元} spcirc {美元} C的超高真空(UHV)中进行退火,导致氧化层脱附,留下干净无序的干净的Ge表面,没有C或O杂质。通过分子束外延(MBE)外延生长的具有不同Ge分数的Si {dollar} sb {lcub} rm 1-x {rcub} {dollar} Ge {dollar} sb {lcub} rm x {rcub} {dollar}合金膜通过暴露在紫外线臭氧中不同的时间将Si(111)衬底上的铜氧化。这导致包含+4状态的Si和Ge的均匀氧化物膜的生长。氧化物厚度最初迅速增加,但达到饱和值。对于半导体合金中0至100%的Ge分数,其变化范围为1.3至3 nm。这种行为与由于电子从SiGe价带进入氧化物的光激发而导致的空间电荷区域的存在是一致的。光电子帮助电离表面氧,这是氧化反应的关键步骤。使用XPS仪器中的程序升温解吸(TPD)和等温退火技术研究了GeO {sb2 {s}} 2薄膜的解吸动力学。解吸发生在{dollar} <{dollar} 10 {dollar} spcirc {dollar} C的狭窄温度范围内,温度为{dollar} sim {dollar} 400 {dollar} spcirc {dollar} C。解吸过程中Ge 3d峰的XPS光谱显示,即使GeO是解吸物质,GeO信号也没有增加。等温退火实验证实,氧化膜在约400℃时突然解吸。氧化物的解吸不是通过逐层过程进行的。提出通过在膜中形成孔来完成解吸,并且其表现为成核限制过程。

著录项

  • 作者

    Agarwal, Avinash Kumar.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号