首页> 外文学位 >Computing range maps for low-altitude rotorcraft flight using computer vision and a hierarchical framework.
【24h】

Computing range maps for low-altitude rotorcraft flight using computer vision and a hierarchical framework.

机译:使用计算机视觉和分层框架计算低空旋翼飞机飞行的航程图。

获取原文
获取原文并翻译 | 示例

摘要

Computer vision is one of many sensing modalities suited for obstacle detection onboard autonomous vehicles navigating in unknown or only partially known environments. For rotorcraft flying at very low altitudes, the use of image sequences from cameras mounted to the vehicle is desirable because vision is passive and provides rapid sensing of the environment with near infinite range and a wide field of view. Unfortunately, the processing of visual images to generate range maps of the nearby environment is computationally expensive, and currently cannot be performed in real time, even using relatively low-performance cameras. Furthermore, this problem will be exacerbated by the use of new high-performance cameras whose high resolution is necessary to provide the range map denseness required for safe navigation.; We propose a hierarchical set of computations that guarantees that range maps based on feature points can be computed in real time. This is achieved by selecting, at regular intervals in time, a subset of features to track, such that the onboard computing resources are not exceeded. This is enabled and enhanced by an efficient multirate, multiresolutional approach to tracking features. A high level computation determines which features to track, then assigns each feature to one of many parallel slave processors, allocating a maximum amount of computing resources for the feature. Features are chosen to improve overall range map accuracy and feature density, as required for the navigation objectives. Computations at the feature level select image data from a multirate and multiresolution image data structure to produce the best range estimates while using only the available computing resources. The result is a more efficient and more focused processing of image data, more control over the distribution of features in the range map, and a guarantee of real time computing performance.
机译:计算机视觉是适合在未知或仅部分已知的环境中航行的自动驾驶车辆上的障碍物检测的许多传感方式之一。对于在非常低的高度飞行的旋翼航空器,使用来自安装在车辆上的摄像机的图像序列是可取的,因为视觉是被动的并且可以在接近无限范围和宽视野的情况下快速感知环境。不幸的是,处理视觉图像以生成附近环境的距离图在计算上是昂贵的,并且即使使用相对性能较低的相机,当前也不能实时执行。此外,使用新的高性能相机将使这个问题更加恶化,这些相机的高分辨率对于提供安全导航所需的距离图密度是必不可少的。我们提出了一组计算层次结构,以确保可以实时计算基于特征点的距离图。这是通过以规则的时间间隔选择要跟踪的功能子集来实现的,从而不会超出板载计算资源。通过高效的多速率,多分辨率跟踪功能,可以启用和增强此功能。高级计算确定要跟踪的功能,然后将每个功能分配给许多并行从处理器之一,从而为该功能分配最大数量的计算资源。根据导航目标的要求,选择要素以提高总体范围图的准确性和要素密度。特征级的计算从多速率和多分辨率图像数据结构中选择图像数据,以在仅使用可用计算资源的情况下产生最佳范围估计。结果是对图像数据进行了更高效,更集中的处理,对距离图中的特征分布进行了更好的控制,并保证了实时计算性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号