首页> 外文学位 >Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles.
【24h】

Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles.

机译:基于旋翼飞机的无人机的分层飞行控制系统综合。

获取原文
获取原文并翻译 | 示例

摘要

The Berkeley Unmanned Aerial Vehicle (UAV) research aims to design, implement, and analyze a group of autonomous intelligent UAVs and UGVs (Unmanned Ground Vehicles). The goal of this dissertation is to provide a comprehensive procedural methodology to design, implement, and test rotorcraft-based unmanned aerial vehicles (RUAVs). We choose the rotorcraft as the base platform for our aerial agents because it offers ideal maneuverability for our target scenarios such as the pursuit-evasion game. Aided by many enabling technologies such as lightweight and powerful computers, high-accuracy navigation sensors and communication devices, it is now possible to construct RUAVs capable of precise navigation and intelligent behavior by the decentralized onboard control system. Building a fully functioning RUAV requires a deep understanding of aeronautics, control theory and computer science as well as a tremendous effort for implementation. These two aspects are often inseparable and therefore equally highlighted throughout this research.; The problem of multiple vehicle coordination is approached through the notion of a hierarchical system. The idea behind the proposed architecture is to build a hierarchical multiple-layer system that gradually decomposes Each RUAV incorporated into this system performs the given tasks and reports the results through the hierarchical communication channel back to the higher-level coordinator.; In our research, we provide a theoretical and practical approach to build a number of RUAVs based on commercially available navigation sensors, computer systems, and radio-controlled helicopters. For the controller design, the dynamic model of the helicopter is first built. The helicopter exhibits a very complicated multi-input multi-output, nonlinear, time-varying and coupled dynamics, which is exposed to severe exogenous disturbances. This poses considerable difficulties for the identification, control and general operation. A high-fidelity helicopter model is established with the lumped-parameter approach. With the lift and torque aerodynamic model of the main and tail rotors, a nonlinear simulation model is first constructed. The control models of the RUAVs used in our research are derived by the application of a time-domain parametric identification method to the flight data of target RUAVs. Two distinct control theories, namely classical control theory and modern linear robust control theory, are applied to the identified model. The proposed controllers are validated in a nonlinear simulation environment and tested in a series of test flights.; With the successful implementation of the low-level vehicle controller, the guidance layer is designed. The waypoint navigator, which decides the adequate flight mode and the associated reference trajectory, serves as an intermediary between the low-level vehicle control layer and the high-level to commands that are compatible with the low-level structure, a novel framework called Vehicle Control Language (VCL) is developed. The key idea of VCL is to provide a mission-independent methodology to describe given flight patterns. The VCL processor and vehicle control layer are integrated into the hierarchical control structure, which is the backbone of our intelligent UAV system. The proposed idea is validated in the simulation environment and then fully tested in a series of flight tests.
机译:伯克利无人飞行器(UAV)的研究旨在设计,实施和分析一组自主智能UAV和UGV(无人地面飞行器)。本文的目的是提供一种综合的程序方法,以设计,实施和测试基于旋翼飞机的无人机。我们选择旋翼飞机作为空中代理的基础平台,因为它为追击逃避游戏等目标场景提供了理想的机动性。借助许多使能技术,例如轻巧而强大的计算机,高精度导航传感器和通信设备,现在可以通过分散的机载控制系统构建能够进行精确导航和智能行为的RUAV。建立功能全面的RUAV需要对航空,控制理论和计算机科学有深入的了解,并需要付出巨大的努力来实施。这两个方面通常是密不可分的,因此在整个研究过程中都同样强调。通过分层系统的概念来解决多车辆协调的问题。所提议的体系结构背后的思想是建立一个分层的多层系统,该系统逐步分解每个合并到该系统中的RUAV执行给定的任务,并通过分层的通信通道将结果报告给上级协调器。在我们的研究中,我们提供了一种理论和实用的方法,可以基于市售的导航传感器,计算机系统和无线电遥控直升机来构建许多RUAV。对于控制器设计,首先要建立直升机的动态模型。直升飞机具有非常复杂的多输入多输出,非线性,时变和耦合动力学,因此会受到严重的外源性干扰。这给识别,控制和一般操作带来了很大的困难。使用集总参数方法建立了高保真直升机模型。利用主旋翼和尾旋翼的升力和扭矩空气动力学模型,首先构建了非线性仿真模型。通过将时域参数识别方法应用于目标RUAV的飞行数据,推导了我们研究中使用的RUAV的控制模型。两种不同的控制理论,即经典控制理论和现代线性鲁棒控制理论,被应用于所识别的模型。拟议的控制器在非线性仿真环境中得到验证,并在一系列试飞中进行了测试。随着低级车辆控制器的成功实施,设计了引导层。航点导航器决定了适当的飞行模式和相关的参考轨迹,它充当了低层车辆控制层和高层之间与低层结构兼容的命令的中介,这种新颖的框架称为<开发了italic>车辆控制语言(VCL)。 VCL的关键思想是提供一种与任务无关的方法来描述给定的飞行模式。 VCL处理器和车辆控制层被集成到分层控制结构中,这是我们的智能无人机系统的基础。所提出的想法在仿真环境中得到了验证,然后在一系列飞行测试中得到了充分的测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号