首页> 外文学位 >The roles of STAT6 and STAT4 in glucose and lipid homeostasis.
【24h】

The roles of STAT6 and STAT4 in glucose and lipid homeostasis.

机译:STAT6和STAT4在葡萄糖和脂质稳态中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Innate and adaptive immune responses perform critical functions in host defense, tissue injury and tissue remodeling. Although these inflammatory responses can be life-saving during times of infection or tissue damage, uncontrolled inflammation contributes to the pathogenesis of various degenerative, autoimmune, and metabolic diseases, including multiple sclerosis, arthritis, atherosclerosis, and type 2 diabetes. For instance, inflammatory activation of macrophages and the release of T helper 1 (TH1) type inflammatory cytokines like tumor necrosis factor alpha, interleukin-6, and interleukin-1beta are closely linked to the pathogenesis of obesity and the detrimental sequelae of insulin resistance and metabolic syndrome. In the past, the development of new therapeutic interventions to treat this inflammatory response focused on either blockade of these inflammatory cytokines, or suppression of the downstream signaling pathways that these cytokines activate. However, biasing the immune response toward the TH2 axis was an alternative approach that successfully attenuated TH1-type inflammation in murine models of autoimmunity without the attendant immunosuppressive sequelae. I hypothesized that the anti-inflammatory axis driven by TH2 type responses could ameliorate the detrimental effects of obesity-induced insulin resistance and metabolic syndrome. I approached this hypothesis from two independent but complementary angles: (1) identification of transcriptional regulators that promote alternative macrophage activation, and (2) disruption (loss of function) and activation (gain of function) of the TH2 axis of inflammation.;During a search for genetic pathways that control alternative macrophage activation, our lab identified the peroxisome proliferator-activated receptor (PPAR)-gamma, a sensor of fatty acids, as a gene that was markedly induced in macrophages stimulated with interleukin-4 (IL-4). We generated mice with a macrophage-specific deletion of PPARgamma, and showed that PPARgamma was critical for the maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impaired alternative macrophage activation, and thereby predisposed these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. In addition, we showed that in response to IL-4, PPARdelta directed the expression of the alternative phenotype in liver macrophages (Kupffer cells) of lean and obese mice. Importantly, adoptive transfer of PPARdelta-/- bone marrow into wild type mice diminished alternative activation of hepatic macrophages, which caused hepatic dysfunction and insulin resistance. Suppression of hepatic oxidative metabolism was recapitulated by co-culturing hepatocytes with PPARdelta-/- macrophages or their conditioned media, which indicated the direct involvement of Kupffer cells in controlling liver lipid metabolism. Altogether, these experiments demonstrate that alternative activation of adipose tissue macrophages and Kupffer cells plays a central role in the maintenance of glucose and lipid homeostasis.;Since it is well established that TH1-type inflammation contributes to the pathogenesis of obesity-induced insulin resistance, I reasoned that biasing the adaptive immune response towards the TH2-axis would mitigate the metabolic sequelae of obesity. Genetic disruption of signal transducer and activator of transcription 6 (STAT6), the mediator of TH2-type immune responses, inhibited insulin action, while administration of the T H2 cytokine interleukin-4 (IL-4) improved glucose tolerance and insulin sensitivity in obese mice. The anti-diabetic effects of the IL-4/STAT6 axis were partially, mediated by regulation of hepatic fuel selection via inhibition of peroxisome proliferator-activated receptor alpha (PPARalpha).;Since mice unable to activate the TH2 axis of inflammation exhibited marked impairment in nutrient homeostasis, I explored the role of the signal transducer and activator of transcription 4 (STAT4), a key transcriptional regulator of TH1 responses, in glucose and lipid homeostasis. STAT4 null mice were resistant to diet-induced glucose intolerance. Strikingly, STAT4 deficient mice exhibited fasting hypoglycemia, due in part to blunted expression of the transcriptional program associated with the fasting response. Moreover, fasting induced interleukin-12 (IL-12) production by liver Kupffer cells. IL-12 was able to synergize with gluconegenic factors to increase the expression of genes associated with the fasting response.;Together, these findings identify a new biological function for T H2 and TH1 immunity in the regulation of energy homeostasis. I show that activation of the TH2 inflammatory program ameliorates the harmful effects of obesity, and I identify STAT6 as a key transcriptional regulator of energy homeostasis. Moreover, I show that the TH1 signaling pathway is critical to the initiation of the fasting response. Thus, my thesis work uncovers novel transcriptional crosstalk between the immune and metabolic systems, indicating that these programs might have coevolved to control essential functions in metazoans.
机译:先天性和适应性免疫反应在宿主防御,组织损伤和组织重塑中起关键作用。尽管这些炎性反应在感染或组织损伤时可以挽救生命,但不受控制的炎症会导致各种退行性,自身免疫性和代谢性疾病的发病机理,包括多发性硬化症,关节炎,动脉粥样硬化和2型糖尿病。例如,巨噬细胞的炎性激活和T辅助1(TH1)型炎性细胞因子的释放,例如肿瘤坏死因子α,白细胞介素6和白细胞介素1β与肥胖的发病机理以及胰岛素抵抗和代谢综合征。过去,用于治疗这种炎症反应的新疗法的开发集中在阻断这些炎症细胞因子,或抑制这些细胞因子激活的下游信号传导途径。但是,将免疫应答偏向TH2轴是一种成功的方法,可以在没有伴随免疫抑制后遗症的自身免疫小鼠模型中成功减轻TH1型炎症。我假设由TH2型反应驱动的抗炎轴可以减轻肥胖引起的胰岛素抵抗和代谢综合征的有害作用。我从两个独立但互补的角度探讨了这一假设:(1)识别促进替代性巨噬细胞激活的转录调节因子,(2)炎症TH2轴的破坏(功能丧失)和激活(功能获得)。为了寻找可控制其他巨噬细胞激活的遗传途径,我们的实验室将过氧化物酶体增殖物激活受体(PPAR)-γ(一种脂肪酸传感器)确定为在白介素4(IL-4)刺激的巨噬细胞中被明显诱导的基因。 )。我们生成了具有PPARgamma巨噬细胞特异性缺失的小鼠,并表明PPARgamma对于交替激活的巨噬细胞的成熟至关重要。髓样细胞中PPARγ的破坏削弱了替代性巨噬细胞的活化,从而使这些动物容易发生饮食诱导的肥胖,胰岛素抵抗和葡萄糖耐量异常。此外,我们显示了对IL-4的响应,PPARdelta指导瘦型和肥胖型小鼠肝巨噬细胞(库普弗细胞)中替代表型的表达。重要的是,PPARδ-/-骨髓过继转移到野生型小鼠中会减少肝巨噬细胞的选择性激活,从而导致肝功能障碍和胰岛素抵抗。通过将肝细胞与PPARδ-/-巨噬细胞或它们的条件培养基共同培养来概括抑制肝氧化代谢,这表明库普弗细胞直接参与控制肝脂质代谢。总而言之,这些实验表明,脂肪组织巨噬细胞和库普弗细胞的交替激活在维持葡萄糖和脂质体内稳态中起着核心作用。由于已经确定TH1型炎症是肥胖引起的胰岛素抵抗的发病机理,我认为偏向TH2轴的适应性免疫反应会减轻肥胖的代谢后遗症。信号转导子和转录激活子6(STAT6)(TH2型免疫应答的介体)的遗传破坏抑制了胰岛素作用,同时给予T H2细胞因子白介素4(IL-4)改善了肥胖患者的糖耐量和胰岛素敏感性老鼠。 IL-4 / STAT6轴的抗糖尿病作用部分是通过抑制过氧化物酶体增殖物激活的受体α(PPARalpha)来调节肝燃料的选择介导的;由于无法激活炎症TH2轴的小鼠表现出明显的损伤在营养稳态中,我探讨了信号转导和转录激活因子4(STAT4)(TH1反应的关键转录调节因子)在葡萄糖和脂质稳态中的作用。 STAT4无效的小鼠对饮食诱导的葡萄糖不耐症具有抗性。令人惊讶的是,STAT4缺陷型小鼠表现出空腹低血糖,部分原因是与空腹反应相关的转录程序表达减弱。此外,禁食诱导肝库普弗细胞产生白介素12(IL-12)。 IL-12能够与糖原异生因子协同作用,从而增加与禁食反应相关的基因的表达。;这些发现共同确定了T H2和TH1免疫在调节能量稳态方面的新生物学功能。我发现TH2炎症程序的激活改善了肥胖的有害影响,我确定STAT6是能量稳态的关键转录调节因子。此外,我表明TH1信号通路对空腹反应的启动至关重要。从而,我的论文工作揭示了免疫系统和代谢系统之间的新型转录串扰,表明这些程序可能已经进化为控制后生动物的基本功能。

著录项

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Health Sciences Medicine and Surgery.;Biology Physiology.;Health Sciences Immunology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号