首页> 外文学位 >Micromechanics of rock friction and wear processes: A theoretical and experimental study.
【24h】

Micromechanics of rock friction and wear processes: A theoretical and experimental study.

机译:岩石摩擦和磨损过程的微力学:理论和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The research described in the thesis is an attempt to understand the physics of rock friction at the micromechanical scale. Frictional sliding is always associated with damage and erosion of the surfaces which is known as wear. The micro-processes of wear during frictional sliding on the surfaces of Westerly granite have been investigated experimentally and theoretically. Wear experiments are conducted on the surfaces with different roughnesses, under normal stress ranging from 1 to 10 MPa and over displacements up to 2 meters. The wear is modeled with two kinds of micromechanisms, shearing-off and riding-over wear. There is a critical overlap distance that determines which of two processes will occur. A quantitative study on micromechanics of base friction with a combined experimental and theoretical approach has been carried out. The base friction, the first order frictional resistance, is the sum of a number of distinct frictional interactions which progressively develop in the early stages of slip. (1) Initial friction; (2) Interlocking; (3) Surface evolution due to wear; and (4) Friction due to the work of wear. The stability of rock friction, which determines whether faulting is seismic or aseismic, depends on second order frictional phenomena. There are a number of second order effects on friction. We have begun studying two of them, the effect of variable normal stress, and the effect of slip velocity. For the first time we observed time dependent closure between surfaces during static loading and unloading. The results from both creep and relaxation experiments on Westerly granite surfaces show that this time-dependent deformation of contacting asperities is significant. This may be the mechanism for time- and velocity-dependent friction. The scaling of friction parameters is a crucial step for us to study a geological faulting based on our laboratory results. In Chapter Four the model interprets that the critical slip distance {dollar}Dsb{lcub}C{rcub}{dollar} is the distance at which the majority of contacts have changed from partially sliding to fully sliding. The synthetic spectrum method has been used to generate fractal surfaces on different scales. {dollar}Dsb{lcub}C{rcub}{dollar} has been calculated for these synthetic fractal surfaces with the contact model. It is found that {dollar}Dsb{lcub}C{rcub}{dollar} is mainly controlled by the uncorrelated part of surface topography. The relationship between {dollar}Dsb{lcub}C{rcub}{dollar} and the critical correlation length of the surface is a power law. If {dollar}Dsb{lcub}C{rcub}{dollar} for nature faults is in the range, 1 mm to 1 cm, then the calculations show they have correlation lengths of 10s to 100s of meters.
机译:本文所描述的研究是在微观力学尺度上理解岩石摩擦的物理学的尝试。摩擦滑动总是与表面的损坏和腐蚀有关,这称为磨损。已经在实验和理论上研究了Westerly花岗岩表面摩擦滑动过程中磨损的微观过程。在具有1至10 MPa的法向应力和最大2米的位移范围内的不同粗糙度的表面上进行磨损实验。使用两种微观机制对磨损建模,即剪切磨损和骑乘磨损。存在一个临界重叠距离,该距离决定了将发生两个过程中的哪个。结合实验和理论方法对基础摩擦的微观力学进行了定量研究。基本摩擦是一阶摩擦阻力,是滑移早期逐渐发展的许多独特摩擦相互作用的总和。 (1)初始摩擦; (2)联锁; (3)由于磨损引起的表面变形; (4)由于磨损而产生的摩擦。岩石摩擦的稳定性(取决于断层是地震还是地震)取决于二阶摩擦现象。摩擦有许多二阶影响。我们已经开始研究其中两个,可变法向应力的影响和滑移速度的影响。我们第一次观察到在静态加载和卸载过程中,表面之间的时间相关闭合性。在Westerly花岗岩表面上进行的蠕变和松弛实验的结果均表明,这种随时间变化的接触粗糙体变形非常重要。这可能是与时间和速度有关的摩擦的机制。摩擦参数的定标是我们根据实验室结果研究地质断层的关键步骤。在第四章中,模型解释为临界滑移距离{dolb} Dsb {lcub} C {rcub} {dollar}是大多数触点从部分滑动变为完全滑动的距离。合成光谱方法已用于生成不同尺度的分形表面。已经使用接触模型为这些合成的分形表面计算了{dolb} Dsb {lcub} C {rcub} {dollar}。发现{dols} Dsb {lcub} C {rcub} {dollar}主要受表面形貌的不相关部分控制。 {dols} Dsb {lcub} C {rcub} {dollar}与表面的临界相关长度之间的关系是幂律。如果自然断层的{dolb} Dsb {lcub} C {rcub} {dollar}在1 mm至1 cm的范围内,则计算表明它们的相关长度为10s至100s米。

著录项

  • 作者

    Wang, Weibin.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号