首页> 外文学位 >Voltage source inverter output waveform compensation using adaptive intelligent control.
【24h】

Voltage source inverter output waveform compensation using adaptive intelligent control.

机译:电压源逆变器的输出波形补偿采用自适应智能控制。

获取原文
获取原文并翻译 | 示例

摘要

A single-layer neural network-based voltage compensation technique which generates minimum-distortion sinusoidal output voltages from a three-phase PWM inverter used for uninterruptible power supplies (UPS) is described. The proposed compensation technique is implemented in a microprocessor-based controller constructed in the stationary d-q frame where the controller sampling rate is twice the inverter switching frequency. The structure of a feed-forward artificial neural network connects network inputs and outputs through multiple linear or nonlinear neuron models, and processes these input/output data associations in a parallel distributed manner. Network inputs in the form of UPS load voltage commands and load current feedback are propagated forward in the network each controller sampling period generating the inverter output voltage commands, the network outputs, which are converted to three-phase inverter switching signals using the space vector PWM waveform generation process. Each controller sampling period, the network weights are modified by the controller learning process with the objective of minimizing the cost function {dollar}{lcub}1over 2{rcub}{lcub}cdot{rcub}lbrackepsilonsb{lcub}rm dv{rcub}sp2 + epsilonsb{lcub}rm qv{rcub}sp2rbrack{dollar} where {dollar}epsilonsb{lcub}rm dv{rcub}{dollar} and {dollar}epsilonsb{lcub}rm qv{rcub}{dollar} are the measured d- and q-axis UPS load voltage errors. Once the cost function is minimized, the neural network input/output mapping approximates the PWM inverter/output filter circuit inverse transfer characteristics.; Three neural network-based controller configurations were studied via computer simulation: (i) A controller with one hidden layer and hyperbolic tangent squashing functions (six hidden layer nodes used) and the conventional backpropagation learning algorithm utilized. (ii) A controller without hidden layers (single-layer network) and the conventional backpropagation learning algorithm utilized. (iii) A controller without hidden layers and a modified backpropagation learning algorithm utilized.; The third controller configuration was incorporated into the design of an experimental controller. Three-phase UPS system experiments and simulations using this control technique were run using balanced passive, unbalanced passive, and nonlinear loads at inverter switching frequencies consistent with the use of GTO technology. Using the same load models and system parameters, three-phase UPS system simulations were run utilizing average load voltage control and the repetitive controller technique described in (3). Results obtained from these simulations were served as a basis for evaluating the performance of the neural network-based controller.; The application of the neural network-based inverter controller concept is intended for high-power three-phase UPS systems where inverter switching frequencies are reduced and a broad range of UPS loads and output filter designs are encountered. (Abstract shortened by UMI.)
机译:描述了一种基于单层神经网络的电压补偿技术,该技术可从用于不间断电源(UPS)的三相PWM逆变器生成最小失真正弦输出电压。所提出的补偿技术是在静止的d-q帧中构造的基于微处理器的控制器中实现的,该控制器的采样率是逆变器开关频率的两倍。前馈人工神经网络的结构通过多个线性或非线性神经元模型连接网络输入和输出,并以并行分布式方式处理这些输入/输出数据关联。 UPS输入负载电压命令和负载电流反馈形式的网络输入在每个控制器采样周期内在网络中向前传播,从而生成逆变器输出电压命令,网络输出通过空间矢量PWM转换为三相逆变器开关信号波形生成过程。在每个控制器采样周期内,控制器学习过程都会修改网络权重,目标是使成本函数{dollar} {lcub} 1超过2 {rcub} {lcub} cdot {rcub} lbrackepsilonsb {lcub} rm dv {rcub} sp2 + epsilonsb {lcub} rm qv {rcub} sp2rbrack {dollar}其中测量的{dollar} epsilonsb {lcub} rm dv {rcub} {dollar}和{dollar} epsilonsb {lcub} rm qv {rcub} {dollar} d轴和q轴UPS负载电压错误。一旦成本函数最小化,神经网络输入/输出映射就近似于PWM逆变器/输出滤波器电路的逆传递特性。通过计算机仿真研究了三种基于神经网络的控制器配置:(i)具有一个隐藏层和双曲正切挤压函数(使用了六个隐藏层节点)的控制器以及所使用的常规反向传播学习算法。 (ii)没有隐藏层的控制器(单层网络)和使用的传统反向传播学习算法。 (iii)没有隐藏层的控制器和使用改进的反向传播学习算法。第三种控制器配置已纳入实验性控制器的设计中。使用此控制技术的三相UPS系统实验和仿真是在逆变器开关频率下使用平衡的无源,不平衡的无源和非线性负载进行的,与GTO技术的使用相一致。使用相同的负载模型和系统参数,利用平均负载电压控制和(3)中所述的重复控制器技术对三相UPS系统进行了仿真。从这些仿真中获得的结果被用作评估基于神经网络的控制器性能的基础。基于神经网络的逆变器控制器概念的应用旨在用于大功率三相UPS系统,在这些系统中,逆变器的开关频率会降低,并且会遇到各种各样的UPS负载和输出滤波器设计。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号