首页> 外文学位 >Molecular genetic and physiological investigations into the acclimation of the cyanobacterial photosynthetic apparatus to nutrient deprivation.
【24h】

Molecular genetic and physiological investigations into the acclimation of the cyanobacterial photosynthetic apparatus to nutrient deprivation.

机译:分子遗传学和生理学研究,以适应蓝藻光合作用对营养物的剥夺。

获取原文
获取原文并翻译 | 示例

摘要

When the cyanobacterium Synechococcus sp. Strain PCC 7942 (a photoautotrophic, oxygen-evolving prokaryote) is deprived of an essential nutrient, growth stops and the cells appear yellow or yellow-green instead of the normal blue-green. This 'bleaching' of cell pigmentation is mainly due to the degradation of the major light-harvesting pigments of the cells, the phycobiliproteins, which are assembled into water-soluble, macromolecular complexes called phycobilisomes. Phycobilisomes were shown to be degraded in two steps in nitrogen- or sulfur-deprived cells. The size of the phycobilisomes was first reduced by the removal, or trimming, of distal rod components, and the trimmed phycobilisomes were then completely degraded. In contrast, phosphorus-deprived cells exhibited little phycobilisome degradation. Nutrient-deprived cells also exhibited a decline in photosystem II activity. However, photosystem I remained active in all three cases, probably providing energy via cyclic photophosphorylation for the maintenance of basic cellular processes.; To identify genes involved in this acclimation of the photosynthetic apparatus to nutrient deficiency, a mutant (nb11) that did not bleach during sulfur deprivation was isolated. nb11 appeared normal except that it could not degrade its phycobilisomes during either nitrogen or sulfur deprivation. nb11 was complemented by a novel gene, designated nblA (non{dollar}underline{lcub}rm bl{rcub}{dollar}eaching), that was transcriptionally activated in nutrient-deprived cells. Increased expression of nblA was shown to be necessary, and perhaps sufficient, to trigger phycobilisome degradation.; A second novel gene (txlA, thioredoxin-like), a new member of the family of protein disulfide oxidoreductases, was identified just downstream and in the opposite orientation of nblA. txlA was constitutively transcribed, and antisense txlA mRNA, driven from the nblA promoter, was also produced in nutrient-deprived cells. Disruption of txlA at the C-terminus interfered with the efficient conversion of the primary products of photochemistry into growth. This metabolic defect affected the regulation of cellular photosynthetic pigment and reaction center contents, and the effect observed appeared to depend on the interaction of TxlA with a second locus that was polymorphic in the wild-type strain. Further examination of txlA may provide valuable new insights into the regulation of the photosynthetic apparatus.
机译:当蓝藻Syechococcus sp。菌株PCC 7942(光合自养型,放氧的原核生物)被剥夺了必要的营养,生长停止,细胞呈现黄色或黄绿色,而不是正常的蓝绿色。细胞色素沉着的这种“漂白”主要是由于细胞中主要的集光色素藻胆蛋白的降解,这些蛋白被组装成称为藻胆体的水溶性大分子复合物。藻胆体在缺氮或缺硫的细胞中分两步降解。首先通过去除或修整远端杆组件来减小藻胆体的大小,然后将修剪的藻胆体完全降解。相反,缺磷的细胞几乎没有胆管体降解。营养不足的细胞也表现出光系统II活性下降。然而,在所有三种情况下,光系统I仍然保持活动状态,可能通过循环光磷酸化提供能量以维持基本的细胞过程。为了鉴定参与光合装置适应营养缺乏的基因,分离了一个在硫缺乏时不漂白的突变体(nb11)。 nb11看起来正常,除了在氮或硫剥夺期间它不能降解其藻胆体。 nb11补充有一个新的基因,称为nblA(非下划线{lcub} rm bl {rcub} {美元}每个),该基因在营养缺乏的细胞中被转录激活。已证明增加nblA的表达是触发藻胆体降解的必要条件,也许是足够的。第二个新基因(txlA,类硫氧还蛋白样)是蛋白质二硫键氧化还原酶家族的新成员,被鉴定为仅在下游且与nblA方向相反。 txlA被组成型转录,并且在营养缺乏的细胞中也产生了由nblA启动子驱动的反义txlA mRNA。在C端txlA的破坏干扰了光化学初级产物向生长的有效转化。该代谢缺陷影响细胞光合色素和反应中心含量的调节,并且观察到的效果似乎取决于TxlA与第二个在野生型菌株中具有多态性的基因座的相互作用。进一步检查txlA可能会为光合装置的调控提供有价值的新见解。

著录项

  • 作者

    Collier, Jackie Lynne.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号