首页> 外文学位 >Macromolecular and physiological consequences of interactive photosynthetic acclimation to light and carbon availability in the cyanobacterium Synechococcus elongatus.
【24h】

Macromolecular and physiological consequences of interactive photosynthetic acclimation to light and carbon availability in the cyanobacterium Synechococcus elongatus.

机译:相互作用的光合作用适应光和碳的可用性对蓝藻Synchococcus elongatus的大分子和生理影响。

获取原文
获取原文并翻译 | 示例

摘要

Photosynthetic organisms must acclimate to multiple, fluctuating environmental factors, including light and nutrient status. Acclimation to changes in one factor has consequences for how an organism can acclimate to changes in another. I studied how high (high Ci) and low inorganic carbon (low C i) concentrations affected growth, photosynthesis, and organization of the photosynthetic apparatus, and then how Ci influences photosynthetic acclimation to changes in light in the freshwater cyanobacterium Synechococcus elongatus (PCC7942). Induced Carbon Concentrating Mechanisms (CCMs) and reorganised electron transport systems allow cells to achieve similar photosynthetic and growth rates under continuous light under high and low Ci. Under changing light, however, high Ci cells quickly exploited increased light and outgrew low Ci cells, which were constrained to pre-light shift growth rates for many hours. Macromolecular acclimation to high light occurred primarily through decreases of functional PSII per PSI and PSII per Rubisco. High Ci cells achieved increased macromolecular pools of photosystems, Rubisco, and nitrogen metabolism by reallocating biosynthesis away from their large initial investment into phycobilisomes. Low Ci cells, however, focused a more limited reallocation from a smaller phycobilisome pool primarily to Rubisco. Before and immediately after the light shift both high and low Ci cells had more potential for PSII electron transport than was realised by net O2 evolution. In high light, high Ci cells acclimated to a lower excess of PSII electron transport over realised net O2 evolution, while that excess remained large in low Ci cells, possibly to power CCMs. A similar high-light acclimation occurred in high Ci cells exposed to rapidly fluctuating light, simulating the light environment of shallow aquatic habitats, while low Ci cells increased their PSII pool to buffer the light fluctuations. Generally, similar rates of macromolecular and physiological acclimation occurred in both cell types when expressed on a generational time scale normalised to growth rates, but on a chronological timescale, acclimation was slow in low Ci cells. The macromolecular and functional reorganisations in low Ci cells confer the advantage of photosynthetic competence at low Ci, but this gain occurred at the expense of slower acclimation relative to rates of environmental change.
机译:光合生物必须适应多种波动的环境因素,包括光照和营养状况。适应一个因素的变化会对有机体如何适应另一个因素的变化产生影响。我研究了高(高Ci)和低无机碳(低C i)浓度如何影响光合设备的生长,光合作用和组织,然后研究了Ci如何影响光合适应对淡水蓝藻延长线(PCC7942)的光变化的影响。 。诱导碳富集机制(CCM)和重组的电子传输系统使细胞在高和低Ci下连续发光下能达到相似的光合作用和生长速率。然而,在不断变化的光线下,高Ci细胞迅速利用了增加的光线,而长出了低Ci细胞,而后者受制于灯前光移的生长速度长达数小时。高分子对强光的适应主要是通过降低每个PSI的功能PSII和降低Rubisco的PSII来实现的。高Ci细胞通过将生物合成从最初的大量投资重新分配到藻胆体中,从而实现了光系统,Rubisco和氮代谢的大分子池的增加。然而,低Ci细胞集中于从较小的藻胆体库到Rubisco的更有限的重新分配。在光移之前和之后,高和低Ci电池均具有比通过净O 2释放所实现的PSII电子传输更大的潜力。在强光下,高Ci细胞比实际实现的O2放出的PSII电子迁移适应性低,而在低Ci细胞中,该过量仍然很大,可能为CCM供电。在暴露于快速波动的光下的高Ci细胞中也发生了类似的高光适应,从而模拟了浅水生生境的光照环境,而低Ci细胞则增加了PSII库以缓冲光的波动。通常,两种细胞类型的大分子和生理适应性发生率均发生在按生长速率归一化的世代时间尺度上表达时,但按时间顺序而言,低Ci细胞的适应性较慢。低Ci细胞中的大分子和功能重组赋予了低Ci光合作用能力的优势,但是相对于环境变化的速率,这种增长的发生是以较慢的适应为代价的。

著录项

  • 作者

    MacKenzie, Tyler D. B.;

  • 作者单位

    University of New Brunswick (Canada).;

  • 授予单位 University of New Brunswick (Canada).;
  • 学科 Biology Microbiology.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号