首页> 外文学位 >Application of finite-difference time-domain method in RF problems associated with magnetic resonance imaging
【24h】

Application of finite-difference time-domain method in RF problems associated with magnetic resonance imaging

机译:时域有限差分法在磁共振成像相关射频问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

Magnetic resonance imaging (MRI) has been widely applied in medical diagnostics and other fields. It operates at field strengths ranging from a small fraction of a Tesla to as much as four Tesla, with some investigators discussing even higher fields. Unfortunately, RF field penetration effects are magnified at higher fields, potentially affecting image contrast and RF power deposition. Thus, it is important to know the RF field distribution inside the imaging samples with a high degree of accuracy to ensure patient safety and diagnostic quality. Currently, there are various analytical and numerical methods for calculating the RF fields. However, these methods typically do not account for arbitrary, inhomogeneous samples, and most use narrow-band frequency analysis. The finite difference time domain (FDTD) method has been proposed in this dissertation as an approach to overcoming these limitations. The advantage of the FDTD method in RF problem analysis is that the RF coils and inhomogeneous samples can be generally modeled in the computer code and one computation will lead to wide-band frequency response.;Based on the study of nuclear magnetic resonance (NMR) phenomenon and various numerical methods used in MRI, this dissertation has developed and verified the FDTD method applied to the NMR environment. Direct laboratory measurement of RF characteristics and MR imaging experiments are performed to evaluate the capability of the FDTD method in MRI applications. Finally, this method is utilized to perform RF coil analysis, design and MR imaging simulations. Several RF problems are investigated in detail, which include RF field homogeneity, RF shielding effects, and signal-to-noise ratio (SNR).
机译:磁共振成像(MRI)已广泛应用于医疗诊断和其他领域。它的磁场强度范围从特斯拉的一小部分到多达四特斯拉,有些研究人员甚至在更高的领域进行讨论。不幸的是,RF场穿透效应在较高的场上会放大,可能会影响图像对比度和RF功率沉积。因此,重要的是要高度准确地了解成像样本内部的RF场分布,以确保患者安全和诊断质量。当前,存在用于计算RF场的各种分析和数值方法。但是,这些方法通常不考虑任意,不均匀的样本,并且大多数使用窄带频率分析。本文提出了时域有限差分法(FDTD),以克服这些局限性。 FDTD方法在射频问题分析中的优势在于,射频线圈和不均匀样本通常可以在计算机代码中建模,并且一次计算将导致宽带频率响应。;基于对核磁共振(NMR)的研究本文针对磁共振成像中出现的现象和各种数值方法,开发并验证了应用于核磁共振环境的FDTD方法。进行了射频特性的直接实验室测量和MR成像实验,以评估FDTD方法在MRI应用中的能力。最后,该方法用于执行RF线圈分析,设计和MR成像仿真。详细研究了几个RF问题,包括RF场均匀性,RF屏蔽效应和信噪比(SNR)。

著录项

  • 作者

    Han, Yong.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Electrical engineering.;Biomedical engineering.;Medical imaging.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号