首页> 外文学位 >Analysis, prediction and control of machining dynamics applied to turning processes.
【24h】

Analysis, prediction and control of machining dynamics applied to turning processes.

机译:分析,预测和控制应用于车削过程的加工动力学。

获取原文
获取原文并翻译 | 示例

摘要

The study focuses on the analysis prediction and control of turning dynamics, which impose considerable limitations in machining performance. Two important process outputs are considered, productivity and surface roughness of the workpiece. A two-step approach has been developed to improve machining performance. First, the set points of the controllable process inputs are determined from a powerful predictive theory of turning dynamics. Secondly, an on-line optimization procedure is employed to adjust the process inputs about these set points to further improve machining performance. The theory of turning dynamics developed considers fully the flexibility of both the workpiece and the machine tool structure, the dynamics of which are determined using a comprehensive experimental procedure. Furthermore, the linear model of the cutting process has been enhanced by including previously unmodeled phenomena such as interference forces at the tool-workpiece interface and the variation of the depth of cut due to the relative tool-workpiece motion. The predictive theory has been successfully validated through cutting experiments at various cutting configurations and conditions. The problem of improving the performance of the machining process was formulated in an optimization framework. The objective is to improve productivity quantified by material removal rate and minimize the mean amplitude of the thrust force by adjusting the feedrate and spindle speed subject to chatter constraints, productivity limits as well as the cutting speed, and feedrate bounds. An on-line numerical optimization scheme based on Evolutionary Operation (EVOP) was employed to solve this problem. The control scheme was tested experimentally and was found to be successful in moving the machining process from a chatter state to a stable machining state while improving the material removal rate.
机译:该研究的重点是车削动力学的分析预测和控制,这对加工性能造成了很大的限制。考虑了两个重要的过程输出,即生产率和工件的表面粗糙度。已经开发了一种两步方法来改善加工性能。首先,根据强大的转向动力学预测理论确定可控制过程输入的设定点。其次,采用在线优化程序来调整有关这些设定点的过程输入,以进一步提高加工性能。所开发的车削动力学理论充分考虑了工件和机床结构的灵活性,其动力学是通过综合实验程序确定的。此外,通过包括先前未建模的现象(例如在工具-工件界面处的干涉力以及由于工具-工件的相对运动而导致的切削深度的变化)来增强切削过程的线性模型。通过在各种切削配置和条件下进行切削实验,已经成功地验证了预测理论。在优化框架中提出了改善加工过程性能的问题。目的是通过调整进给速度和主轴转速(受颤振约束,生产率极限以及切削速度和进给速度限制)来提高通过材料去除率量化的生产率,并最小化推力的平均幅度。为了解决这个问题,采用了基于进化运算(EVOP)的在线数值优化方案。该控制方案经过实验测试,发现可以成功地将加工过程从振颤状态转变为稳定的加工状态,同时提高了材料去除率。

著录项

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号