首页> 外文学位 >Stochastic modelling of materials subjected to monotonic and high-cycle loading.
【24h】

Stochastic modelling of materials subjected to monotonic and high-cycle loading.

机译:承受单调和高周期载荷的材料的随机建模。

获取原文
获取原文并翻译 | 示例

摘要

In this research two types of models are studied which account for the scatter in material response: (a) idealized one-dimensional stochastic micro-mechanical models for brittle and plastic materials subjected to monotonic loading; and (b) a stochastic continuum damage mechanical model for crack initiation in high-cycle fatigue.;The one-dimensional stochastic micro-mechanical model is represented by a set of either brittle or ideal-plastic, linear-elastic springs of equal stiffness that are joined in parallel. The failure displacements of the brittle springs and yield displacements of the elastic-plastic springs are modelled as a continuous or discrete correlated random field. The statistics of the random force-displacement and damage-displacement functions are derived for both cases. The brittle-model is further modified to include the formations of local stress concentrations at a damaged part of a structural component. These idealized models are shown to offer a viable alternative to empirical methods proposed in the literature for exploring the statistical behavior of brittle and plastic materials.;The stochastic continuum damage mechanics model is developed to study the statistical aspects of the failure life associated with crack initiation in high-cycle fatigue. A deterministic relation is established for the evolution of damage, defined as density of micro-cracks, such that it satisfies the dissipative inequalities obtained from the Clausius-Duhem inequality. The deterministic damage evolution is randomized using a correlated log-normal process to obtain a two-state Markov model for fatigue crack initiation. The mean, standard deviation and probability distribution of the random time to initiate a macroscopic crack are numerically computed for the Markov model.
机译:在这项研究中,研究了两种类型的模型,这些模型说明了材料响应中的分散性:(a)承受单调载荷的脆性和塑性材料的理想一维随机微机械模型; (b)高周疲劳中裂纹萌生的随机连续损伤力学模型。一维随机微力学模型由一组刚度相等的脆性或理想塑性,线性弹性的弹簧表示,并行连接。将脆性弹簧的破坏位移和弹塑性弹簧的屈服位移建模为连续或离散的相关随机场。两种情况下都可以得出随机力-位移和损伤-位移函数的统计数据。进一步修改了脆性模型,以包括在结构组件的受损部分处的局部应力集中的形成。这些理想化的模型显示出为文献中提出的探索脆性和塑性材料的统计行为的经验方法提供了可行的替代方法;随机连续损伤力学模型的开发是为了研究与裂纹萌生相关的破坏寿命的统计方面在高周疲劳中。建立损伤演化的确定性关系,定义为微裂纹的密度,使其满足从克劳修斯-杜海姆不等式获得的耗散不等式。使用相关对数正态过程将确定性损伤演化随机化,以获得用于疲劳裂纹萌生的二态马尔可夫模型。对于马尔可夫模型,通过数值计算了随机时间的平均值,标准差和概率分布,以引发宏观裂纹。

著录项

  • 作者

    Kandarpa, Satish.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Automotive.;Engineering Mechanical.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号