首页> 外文学位 >Accessible microfluidic devices for studying endothelial cell biology.
【24h】

Accessible microfluidic devices for studying endothelial cell biology.

机译:用于研究内皮细胞生物学的可访问微流控设备。

获取原文
获取原文并翻译 | 示例

摘要

Endothelial cells (ECs) form the inner lining of all blood vessels in the body, and coat the outer surfaces of heart valves. Because ECs are anchored to extracellular matrix proteins and are positioned between flowing blood and underlying interstitium, ECs are constantly exposed to hemodynamic shear, and act as a semi-permeable barrier to blood-borne factors. In vitro cell culture flow (ICF) systems have been employed as laboratory tools for testing endothelial properties such as adhesion strength, shear response, and permeability. Recently, advances in microscale technology have introduced microfluidic systems as alternatives to conventional ICF devices, with a multitude of practical advantages not available at the macroscale. However, acceptance of microfluidics as a viable platform has thus far been reserved because utility of microfluidics has yet to be fully demonstrated. For biologists to embrace microfluidics, engineers must validate microscale systems and prove their practicality as tools for cell biology. Microfluidic devices were designed, fabricated, and implemented to study properties of two EC types: aortic ECs and valve ECs. The objective was to streamline experimentation to reveal phenotypic traits of the two types and in the process demonstrate the usefulness of microfluidics. The first task was to develop a protocol to isolate pure populations of valve ECs because reported methods were inadequate. Dispase and collagenase in combination for leaflet digestion followed by clonal expansion of cell isolates was optimal for obtaining pure valve EC populations. Using a parallel microfluidic network, we discovered that valve ECs adhered strongly and spread well only on fibronectin and not on type I collagen. In contrast, aortic ECs adhered strongly on both proteins. Both aortic and valve ECs were then exposed to shear and analyzed for cell orientation. Morphological analyses showed aortic and valve ECs both aligned parallel to flow when sheared in a macroscale flow chamber, but aortic ECs aligned perpendicular to flow when sheared in a microchannel. Finally, a microfluidic membrane device was designed and characterized as a potential tool for measuring albumin permeability through sheared endothelial monolayers. Overall, these studies revealed novel EC characteristics and phenomena, and demonstrated accessibility of microfluidics for EC studies.
机译:内皮细胞(EC)形成体内所有血管的内层,并覆盖心脏瓣膜的外表面。由于EC锚定在细胞外基质蛋白上,并位于流动的血液和下层间质之间,因此EC不断受到血流动力学的剪切作用,并成为血液传播因子的半渗透性屏障。体外细胞培养液流(ICF)系统已用作实验室工具,用于测试内皮特性,如粘附强度,剪切响应和渗透性。近来,微尺度技术的进步已经引入微流体系统作为常规ICF装置的替代品,其具有在宏观尺度上尚不可用的许多实际优势。然而,由于尚未充分证明微流体的效用,因此迄今保留了将微流体作为可行平台的接受。为了使生物学家能够接受微流体技术,工程师必须验证微尺度系统并证明其作为细胞生物学工具的实用性。设计,制造和实施微流体装置以研究两种EC类型的特性:主动脉EC和瓣膜EC。目的是简化实验以揭示两种类型的表型特征,并在此过程中证明微流体学的有用性。首要任务是开发一种协议,以分离纯净的瓣膜EC,因为所报道的方法不足。分散酶和胶原酶联合用于小叶消化,然后进行细胞分离株的克隆扩增,是获得纯瓣膜EC种群的最佳选择。使用平行的微流体网络,我们发现瓣膜EC粘附牢固,仅在纤连蛋白上扩散良好,而在I型胶原上则没有扩散。相反,主动脉EC牢固地粘附在两种蛋白质上。然后将主动脉和瓣膜EC都暴露于剪切力下并分析细胞方向。形态分析表明,在大型流动室中剪切时,主动脉和瓣膜EC均平行于流对齐,而在微通道中剪切时,主动脉EC则垂直于流对齐。最后,设计了微流体膜装置并将其表征为测量通过剪切的内皮单层的白蛋白渗透性的潜在工具。总体而言,这些研究揭示了新颖的EC特性和现象,并证明了微流体可用于EC研究。

著录项

  • 作者

    Young, Edmond Wai Keung.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号