首页> 外文学位 >Co-regulation of the electron transport and carbon assimilation in C3 and C4 plants: The role of CF0-CF1 ATP synthase.
【24h】

Co-regulation of the electron transport and carbon assimilation in C3 and C4 plants: The role of CF0-CF1 ATP synthase.

机译:C3和C4植物中电子传输和碳同化的共同调节:CF0-CF1 ATP合酶的作用。

获取原文
获取原文并翻译 | 示例

摘要

Photosynthetic electron transport and Calvin cycle reactions need to be co-regulated in order to provide optimal flux into end product and minimize the formation of reactive oxygen species leading to photo-inhibition. An important means of dissipating excess energy is mediated by an increased acidification in the lumen of thylakoid membranes of the chloroplast which has been proposed to occur through increased photochemistry through cyclic electron flow (CEF) via photosystem (PS) I, or by linear electron flow in the Mehler reaction. We have shown that decreases in the thylakoid membrane ATP synthase conductance to protons is an important component in this dissipation of excess energy and photoprotection. It is universal and it takes place in C3 plants, as well as in all three biochemical subtypes of C4 plants. C 4 plants showed a similar pattern of ATP synthase regulation to C 3 plants despite the differences in photosynthetic carbon metabolism. Down-regulation of ATP synthase proton conductivity at low CO2 and high light increases intrathylakoid H+ concentration which activates the energy dissipation mechanism, thus protecting PS II. Three mutants were tested which provided support for this hypothesis: one in photochemistry (related to CEF), one in CO2 fixation (Rubisco = ribulose 1,5-bisphosphate carboxylase oxygenase), and one in carbohydrate biosynthesis (starch-less). A possible mechanism of regulating ATP-synthase conductance to protons is through the levels of inorganic phosphate (Pi) in the chloroplast stroma, since this is a substrate for the enzyme. We tested this hypothesis using a starch-less mutant. This mutant is limited in utilizing the products of photosynthesis and is considered to cause a build-up of organic-P, a depletion of Pi and feedback inhibition of photosynthesis. ATP synthase conductivity closely followed the change in activity of carbon fixation reactions, which supports the hypothesis that Pi is a regulator of ATP synthase. The low Rubisco mutant of tobacco and a mutant of Arabidopsis which affects CEF also provided support for regulation of ATP synthase conductance having a key role in photoprotection and dissipation of excess energy.
机译:光合电子传输和加尔文循环反应需要被共同调节,以提供进入最终产品的最佳通量,并最小化导致光抑制的活性氧的形成。耗散多余能量的一种重要手段是通过叶绿体类囊体膜腔内酸化的增加来介导,这已提出是通过光电子通过循环电子流(CEF)通过光系统(PS)I或通过线性电子流来增加光化学作用而发生的。在梅勒反应中。我们已经表明类囊体膜ATP合酶对质子的传导性的降低是这种多余能量的消散和光保护的重要组成部分。它是通用的,它发生在C3植物以及C4植物的所有三种生化亚型中。尽管光合作用的碳代谢不同,但C 4植物显示出与C 3植物相似的ATP合酶调控模式。在低CO2和高光照下ATP合酶质子传导性的下调会增加类囊体中H +的浓度,从而激活能量耗散机制,从而保护PS II。测试了三个突变体,这些突变体为这一假设提供了支持:一个在光化学中(与CEF相关),一个在CO2固定中(橡胶=核糖1,5-二磷酸羧化酶加氧酶),一个在碳水化合物生物合成中(无淀粉)。调节ATP合酶对质子传导的可能机制是通过叶绿体基质中无机磷酸盐(Pi)的水平,因为这是酶的底物。我们使用无淀粉突变体检验了该假设。该突变体在利用光合作用的产物方面受到限制,并且被认为引起有机-P的积累,Pi的消耗和光合作用的反馈抑制。 ATP合酶的电导率紧随碳固定反应活性的变化,这支持了Pi是ATP合酶调节剂的假设。烟草的低Rubisco突变体和影响CEF的拟南芥突变体也为调节ATP合酶电导提供了支持,而ATP合酶电导在光保护和耗散多余能量中起关键作用。

著录项

  • 作者

    Kiirats, Olavi.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Biology Botany.;Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号