首页> 美国卫生研究院文献>PLoS Computational Biology >Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump
【2h】

Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump

机译:计算模型预测单细胞C4生化泵对C3植物的大量碳同化收益

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Achieving global food security for the estimated 9 billion people by 2050 is a major scientific challenge. Crop productivity is fundamentally restricted by the rate of fixation of atmospheric carbon. The dedicated enzyme, RubisCO, has a low turnover and poor specificity for CO2. This limitation of C3 photosynthesis (the basic carbon-assimilation pathway present in all plants) is alleviated in some lineages by use of carbon-concentrating-mechanisms, such as the C4 cycle—a biochemical pump that concentrates CO2 near RubisCO increasing assimilation efficacy. Most crops use only C3 photosynthesis, so one promising research strategy to boost their productivity focuses on introducing a C4 cycle. The simplest proposal is to use the cycle to concentrate CO2 inside individual chloroplasts. The photosynthetic efficiency would then depend on the leakage of CO2 out of a chloroplast. We examine this proposal with a 3D spatial model of carbon and oxygen diffusion and C4 photosynthetic biochemistry inside a typical C3-plant mesophyll cell geometry. We find that the cost-efficiency of C4 photosynthesis depends on the gas permeability of the chloroplast envelope, the C4 pathway having higher quantum efficiency than C3 for permeabilities below 300 μm/s. However, at higher permeabilities the C4 pathway still provides a substantial boost to carbon assimilation with only a moderate decrease in efficiency. The gains would be capped by the ability of chloroplasts to harvest light, but even under realistic light regimes a 100% boost to carbon assimilation is possible. This could be achieved in conjunction with lower investment in chloroplasts if their cell surface coverage is also reduced. Incorporation of this C4 cycle into C3 crops could thus promote higher growth rates and better drought resistance in dry, high-sunlight climates.
机译:到2050年,全球估计有90亿人口的粮食安全是一项重大的科学挑战。作物生产力从根本上受到大气碳固定率的限制。专用酶RubisCO具有较低的周转率和对CO2的特异性差。 C3光合作用(所有植物中存在的基本碳同化途径)的这种局限性在某些世系中通过使用碳浓缩机制(例如C4循环)得以缓解,C4循环是一种生物化学泵,可在RubisCO附近浓缩CO2,从而提高同化效率。大多数农作物仅利用C3光合作用,因此,一种提高生产力的有前途的研究策略集中在引入C4循环上。最简单的建议是使用循环将CO2浓缩到各个叶绿体中。然后,光合作用效率将取决于CO2从叶绿体中的泄漏。我们使用一个典型的C3植物叶肉细胞几何结构内的3D碳和氧扩散空间模型以及C4光合作用生物化学来研究该提议。我们发现,C4光合作用的成本效率取决于叶绿体包膜的透气性,对于低于300μm/ s的渗透率,C4途径的量子效率比C3高。但是,在较高的渗透率下,C4途径仍可大大提高碳同化率,而效率仅会适度降低。叶绿体收集光的能力将限制增益,但是即使在现实的光照条件下,碳同化的可能性也可能提高100%。如果还减少了叶绿体的细胞表面覆盖率,则可以通过减少对叶绿体的投资来实现。因此,将这种C4循环并入C3作物可以在干旱,高日照气候下促进更高的生长速率和更好的抗旱性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号