首页> 外文学位 >Stable crack growth trajectories and fracture due to interacting cracks.
【24h】

Stable crack growth trajectories and fracture due to interacting cracks.

机译:稳定的裂纹扩展轨迹和由于相互作用的裂纹导致的断裂。

获取原文
获取原文并翻译 | 示例

摘要

Despite impressive progress in the field of fracture in recent years, there are still a number of important practical problems that are not well understood. Amongst these, propagational stability, the direction of crack extension in mixed mode loading, directional stability, alternating crack trajectories, and crack interaction were explored in this thesis.;The conditions leading to the onset of crack growth and the conditions under which a crack will continue to propagate or arrest for mixed mode I and II loading are reviewed. It is shown that the current ASME Section-XI Code rules for treating mixed mode loading can be non-conservative based on the interaction model used. The energy based propagational stability criterion for mode-I loading is discussed for mixed mode I and II loading.;After a detailed review of the literature on the subject of the direction of crack extension, three major approaches to this problem--energy, stress, and stress intensity factor--were explored. Comparison of these theories shows that they predict very similar directions for crack extension. A unifying theory to prove the equivalence or lack of equivalence of existing theories for the direction of crack extension is analytically difficult and could not be obtained. Other criteria based on the maximum hoop strain and the maximum void growth rate and the extension of the maximum hoop stress criterion into the elastic plastic regime were explored. However, these approaches do not provide improvement over the maximum hoop stress criterion which gives reasonable predictions for the direction of crack extension.;The directional instability of cracks in nominal mode I loading has been explained in the literature by examining the role of the second term in the series expansion for the stress field. In the present work, by employing finite element techniques, directional instability is explained by using only the singular terms in the series expansions for the stress fields in mode I and II loading, and small perturbations in the crack direction which arise during numerical computations.;Next, the "sinusoidal" crack trajectories that are observed in fracture problems but have never been explained are examined. First, it is shown that the trajectory of a crack can be estimated by applying the maximum hoop stress criterion incrementally, and it is demonstrated that alternating mode II loading leads to an alternating crack trajectory. By analyzing a specific problem--the crack trajectory in a glass strip with a moving thermal stress field--it is shown that the a crack deviates from its plane due to a biaxial tensile stress state and then is driven back by shear stresses which produce mode-II loading. This provides an explanation for the "sinusoidal" crack pattern.;Finally, the effect of crack interaction is studied. An important practical problem, the cracking in the blade attachment area of turbine rotors, is analyzed and the beneficial impact of crack interaction on the size of the critical crack and the life of this component is demonstrated.
机译:尽管近年来在骨折领域取得了令人瞩目的进展,但仍有许多重要的实际问题尚未得到很好的理解。其中研究了裂纹扩展的扩展稳定性,混合模式载荷下裂纹扩展的方向,方向稳定性,交替的裂纹轨迹和裂纹的相互作用。导致裂纹扩展的条件和裂纹扩展的条件继续传播或阻止混合模式I和II的加载。结果表明,基于所使用的交互模型,当前用于处理混合模式加载的ASME Section-XI Code规则可能是非保守的。讨论了I型和II型混合载荷的基于能量的I型载荷传播稳定准则;;在详细讨论了裂纹扩展方向的文献之后,解决了该问题的三种主要方法-能量,应力和压力强度因子-进行了探讨。这些理论的比较表明,它们预测裂纹扩展的方向非常相似。证明裂纹扩展方向上现有理论的等效或不等效的统一理论在分析上是困难的,无法获得。探索了基于最大环向应变和最大空隙增长率以及最大环向应力准则扩展到弹性塑性状态的其他准则。然而,这些方法并不能提供最大环向应力准则的改进,后者可以为裂纹扩展的方向提供合理的预测。文献中已通过研究第二项的作用解释了名义模式I载荷下裂纹的方向不稳定性。在应力场的级数展开中。在目前的工作中,通过采用有限元技术,仅通过对模式I和II载荷下应力场的级数展开中的奇异项以及在数值计算过程中产生的沿裂纹方向的小扰动来解释方向不稳定性。接下来,检查在断裂问题中观察到但从未说明的“正弦”裂纹轨迹。首先,表明可以通过逐步应用最大环向应力准则来估计裂纹的轨迹,并且证明了交变模式II载荷导致交变的裂纹轨迹。通过分析一个特定的问题-具有移动热应力场的玻璃带中的裂纹轨迹-表明,裂纹由于双轴拉伸应力状态而偏离其平面,然后被剪切应力驱回模式II加载。这为“正弦”裂纹模式提供了解释。最后,研究了裂纹相互作用的影响。分析了一个重要的实际问题,即涡轮转子叶片附接区域的裂纹,并说明了裂纹相互作用对临界裂纹尺寸和该组件寿命的有益影响。

著录项

  • 作者

    Shirmohamadi, Manuchehr.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mechanical engineering.;Civil engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号