首页> 外文学位 >Structure-property relationships of aromatic polyimides for toughening epoxy resin (DGEBA).
【24h】

Structure-property relationships of aromatic polyimides for toughening epoxy resin (DGEBA).

机译:芳香族聚酰亚胺用于增韧环氧树脂(DGEBA)的结构性质关系。

获取原文
获取原文并翻译 | 示例

摘要

Epoxy resins are traditionally toughened by the incorporation of reactive rubbers, such as carboxyl-terminated butadiene-acrylonitrile (CTBN) copolymers and amino-terminated butadiene-acrylonitrile (ATBN) copolymers, in which phase separation occurs between epoxy resins and copolymers during cure and a multiphase network is thus formed. Although toughness enhancement in these networks is very effective, in most instances this enhancement is achieved at the expense of stiffness and high-temperature performance. In this research, attempts have been made to toughen epoxy resins using functionalized aromatic polyimides which possess excellent thermal stability and mechanical properties. It is hoped that the high temperature performance of these toughened networks will not be sacrificed.; The solubility of a series of polyimides was first investigated in terms of the structure-property relationships. The solubility of polyimides in different solvents and epoxy resins can be controlled via dianhydride modification. The isopropylene linkages in the polyimide backbones are most likely responsible for the decrease of modulus and yield stress as well as the increase of T{dollar}sb{lcub}rm g{rcub}{dollar} of the polyimides. Property additivity has been established on modifying the mechanical properties of polyimide via the synthesis of copolyimide.; A difunctional epoxy resin, EPON 828 and curing agent 4,4{dollar}spprime{dollar}-diamino diphenylsulfone (DDS) are chosen as a model matrix. First, a series of polyimides are synthesized from 1,3-bis(3-aminophenoxy) benzene, APB, and 4,4{dollar}spprime{dollar}-oxydiphthalic anhydride, ODPA, and they are used as tougheners. The particle dispersed phase is found in the toughened networks regardless of the molecular weights of polyimide. A nearly unchanged toughness in these toughened networks is observed and this may be attributed to the fast phase separation kinetics due to the poor miscibility between the polymide and epoxy resins.; A polyimide synthesized from (Bisphenol-A dianhydride and 4,4- (1,4-phenylene-bis-(1-methyl-ethylidene)) bisanline (BisADA/Bisp) has been found to have a similar solubility parameter to the epoxy resin and demonstrated a successful toughness improvement by using high molecular weight tougheners. Ductile drawing of the polyimide (BisADA-Bisp) matrix in the phase inversed morphology is considered to be the toughening mechanism, in most cases, for this toughened network. Fracture energy (G{dollar}sb{lcub}rm IC{rcub}{dollar}) is increased about five times with 20%(w/w) loading without sacrificing the desired properties such as glass transition temperature (T{dollar}sb{lcub}rm g{rcub}{dollar}), modulus and thermal stability.; The effects of functional end-capped group, molecular weight and weight loadings of tougheners on curing and phase separation are investigated via differential scanning calorimetry (DSC) and small angle light scattering (SALS) experiments. X{dollar}sb{lcub}rm cp{rcub}{dollar}, which is defined as the conversion of the curing reaction at the beginning of phase separation, is found to be decreased with increasing molecular weight and/or weight loading of the polyimide tougheners. This decrease of X{dollar}sb{lcub}rm cp{rcub}{dollar} may be ascribed to the high viscosity environment and/or the decrease of concentration of reactive end groups by adding amino or phenyl terminated polyimide into the curing mixtures.
机译:传统上,环氧树脂是通过掺入反应性橡胶来增韧的,例如羧基端基的丁二烯-丙烯腈(CTBN)共聚物和氨基端基的丁二烯-丙烯腈(ATBN)共聚物,其中在固化过程中环氧树脂和共聚物之间会发生相分离。由此形成多相网络。尽管这些网络中的韧性增强非常有效,但是在大多数情况下,这种增强是以牺牲刚度和高温性能为代价的。在该研究中,已经尝试使用具有优异的热稳定性和机械性能的官能化芳族聚酰亚胺来增韧环氧树脂。希望这些增韧网络的高温性能不会受到影响。首先根据结构性质关系研究了一系列聚酰亚胺的溶解度。聚酰亚胺在不同溶剂和环氧树脂中的溶解度可以通过二酐改性来控制。聚酰亚胺主链中的异丙烯键很可能是导致聚酰亚胺的模量和屈服应力降低以及T {dollar} sb {lcub} rm g {rcub} {dollar}升高的原因。已经通过共聚酰亚胺的合成改变聚酰亚胺的机械性能而建立了性能可加性。选择双官能环氧树脂,EPON 828和固化剂4,4 {dollar} spprime {dollar}-二氨基二苯砜(DDS)作为模型基质。首先,由1,3-双(3-氨基苯氧基)苯,APB和4,4 {dollar} spprime {dollar}-氧二邻苯二甲酸酐ODPA合成一系列聚酰亚胺,并将其用作增韧剂。不论聚酰亚胺的分子量如何,都在增韧网络中发现了颗粒分散相。在这些增韧的网络中观察到几乎不变的韧性,这可能归因于快速的相分离动力学,这归因于聚酰亚胺和环氧树脂之间差的混溶性。已发现由(双酚A二酐和4,4-(1,4-亚苯基-双-(1-甲基-亚乙基))双三环(BisADA / Bisp)合成的聚酰亚胺具有与环氧树脂相似的溶解度参数并证明了通过使用高分子量增韧剂可以成功地改善韧性。在大多数情况下,对于这种增韧网络,聚酰亚胺(BisADA-Bisp)基体的延展性以反相的相貌被认为是增韧机理。 {dollar} sb {lcub} rm IC {rcub} {dollar})在加载20%(w / w)的情况下增加了大约五倍,而没有牺牲所需的特性,例如玻璃化转变温度(T {dollar} sb {lcub} rm g {rcub} {dollar}),模量和热稳定性;通过差示扫描量热法(DSC)和小角度光散射研究了官能团封端基团,增韧剂的分子量和重量负载对固化和相分离的影响(SALS)实验。X{dollar} sb {lcub} rm cp {rcub} {定义为在相分离开始时固化反应的转化率的美元}随着聚酰亚胺增韧剂的分子量和/或重量负载的增加而降低。 X cp的这种降低可归因于高粘度环境和/或通过将氨基或苯基封端的聚酰亚胺添加到固化混合物中而降低了反应性端基的浓度。

著录项

  • 作者

    Hsu, Bin-Lin.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Chemistry Polymer.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号