首页> 外文学位 >Modeling and Optimization of Delay and Power for Key Components of Modern High-Performance Processors.
【24h】

Modeling and Optimization of Delay and Power for Key Components of Modern High-Performance Processors.

机译:现代高性能处理器关键组件的延迟和功耗建模和优化。

获取原文
获取原文并翻译 | 示例

摘要

In designing a new processor, computer architects consider a myriad of possible organizations and designs to decide which best meets the constraints on performance, power and cost for each particular processor. To identify practical designs, architects need to have insight into the physical-level characteristics (delay, power and area) of various components of modern processors implemented in recent fabrication technologies. During early stages of design exploration, however, developing physical-level implementations for various design options (often in the order of thousands) is impractical or undesirable due to time and/or cost constraints. In lieu of actual measurements, analytical and/or empirical models can offer reasonable estimates of these physical-level characteristics. However, existing models tend to be out-dated for three reasons: (i) They have been developed based on old circuits in old fabrication technologies; (ii) The high-level designs of the components have evolved and older designs may no longer be representative; and, (iii) The overall architecture of processors has changed significantly, and new components for which no models exist have been introduced or are being considered.;This thesis studies three key components of modern high-performance processors: Counting Bloom Filters (CBFs), Checkpointed Register Alias Tables (RATs), and Compacted Matrix Schedulers (CMSs). CBFs optimize membership tests (e.g., whether a block is cached). RAT and CMS increase the opportunities for exploiting instruction-level parallelism; RAT is the core of the renaming stage, and CMS is an implementation for the instruction scheduler. Physical-level studies or models for these components have been limited or non-existent. In addition to investigating these components at the physical level, this thesis (i) proposes a novel speed- and energy-efficient CBF implementation; (ii) studies how the number of RAT checkpoints affects its latency and energy, and overall processor performance; and, (iii) studies the CMS and its accompanying logic at the physical level. This thesis also develops empirical and analytical latency and energy models that can be adapted for newer fabrication technologies. Additionally, this thesis proposes physical-level latency and energy optimizations for these components motivated by design inefficiencies exposed during the physical-level study phase.
机译:在设计新处理器时,计算机架构师会考虑各种可能的组织和设计,以决定哪种处理器最能满足每个特定处理器在性能,功耗和成本方面的限制。为了确定实用的设计,架构师需要洞悉以最新制造技术实现的现代处理器各个组件的物理级别特征(延迟,功率和面积)。然而,在设计探索的早期阶段,由于时间和/或成本限制,为各种设计选项(通常为数千个)开发物理级别的实现是不切实际或不希望的。代替实际的测量,分析和/或经验模型可以提供这些物理水平特征的合理估计。但是,由于以下三个原因,现有模型往往过时了:(i)它们是基于旧的制造技术中的旧电路开发的; ii各组成部分的高级设计已经演变,旧的设计可能不再具有代表性; (iii)处理器的整体体系结构发生了重大变化,没有引入或正在考虑采用其模型的新组件。;本论文研究了现代高性能处理器的三个关键组件:计数布隆滤波器(CBF) ,检查点寄存器别名表(RAT)和压缩矩阵调度程序(CMS)。 CBF优化成员资格测试(例如,是否缓存块)。 RAT和CMS增加了利用指令级并行性的机会。 RAT是重命名阶段的核心,而CMS是指令调度程序的实现。这些成分的物理水平研究或模型是有限的或不存在的。除了在物理层面研究这些组件之外,本论文(i)提出了一种新颖的速度和能源效率较高的CBF实现; (ii)研究RAT检查点的数量如何影响其等待时间和能量以及整体处理器性能; (iii)在物理层面研究CMS及其伴随逻辑。本文还开发了经验和分析潜伏期以及能量模型,这些模型可以适用于更新的制造技术。此外,本文提出了针对这些组件的物理级延迟和能量优化,这些延迟是由在物理级研究阶段暴露的设计效率低下引起的。

著录项

  • 作者

    Safi, Elham.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号