首页> 外文学位 >Mathematical modeling and optimization of a secondary lithium battery utilizing a fibrillar polypyrrole cathode.
【24h】

Mathematical modeling and optimization of a secondary lithium battery utilizing a fibrillar polypyrrole cathode.

机译:利用原纤维状聚吡咯阴极的锂二次电池的数学建模和优化。

获取原文
获取原文并翻译 | 示例

摘要

A mathematical model for a secondary lithium battery with a fibrillar polypyrrole cathode is developed to investigate the dynamic performance of the cell charge and discharge processes. Dilute solution theory and porous electrode theory are used to characterize the transport phenomena of the electrolyte species in the porous polypyrrole electrode and separator. The model is designed to predict the time dependent distributions of the electrolyte concentration, inserted species solid concentration, active material utilization, solid and liquid potentials and current density for a given electrode and separator porosity and thickness. The model evaluates the influence of physical, design, and operation parameters, such as active surface area, diffusion coefficients, exchange current density, electrode and separator porosity and thickness, active material loading or saturation level of the polypyrrole electrode, discharge or charge rate, and operating temperature, on the dynamic behavior of a lithium battery with a fibrillar polypyrrole cathode.; A sensitivity analysis of the cell performance with respect to the model parameters is performed. Results reveal that the most influential physical parameter on the cell performance is the maximal faradaic charge and the most critical cell design parameter is the ratio of the electrode to separator thickness or the ratio of electroactive and counterion material. Battery optimization should revolve around electrode and separator thickness and porosity, while fibril diameter and electrode porosity are not critical. Sensitivity analysis shows that the model electrokinetic parameters have less influence on the cell performance than those parameters describing the double layer charging and that the effects of the intercalation phenomena during discharge are significant.; Model predictions indicate that thin electrodes at low current densities yield the optimal discharge performance and because of the higher active material utilization, batteries with a fibrillar morphology deliver charge at higher rates, cell voltage, power and energy density than equivalent batteries with conventional flat film electrodes.
机译:建立了具有原纤维状聚吡咯阴极的二次锂电池的数学模型,以研究电池充电和放电过程的动态性能。稀溶液理论和多孔电极理论被用来表征电解质在多孔聚吡咯电极和隔膜中的传输现象。该模型旨在预测给定电极和隔板孔隙率和厚度的电解质浓度,插入物质的固体浓度,活性物质利用率,固体和液体电势以及电流密度随时间的分布。该模型评估物理,设计和操作参数的影响,例如有效表面积,扩散系数,交换电流密度,电极和隔膜的孔隙率和厚度,聚吡咯电极的活性物质负载或饱和度,放电或充电率,和工作温度,对具有原纤化的聚吡咯阴极的锂电池的动态行为。进行关于模型参数的电池性能的敏感性分析。结果表明,对电池性能影响最大的物理参数是最大法拉第电荷,而最关键的电池设计参数是电极与隔板厚度的比率或电活性和抗衡离子材料的比率。电池优化应围绕电极和隔板的厚度和孔隙率,而原纤维直径和电极孔隙率并不关键。敏感性分析表明,与描述双层充电的参数相比,模型的电动参数对电池性能的影响较小,并且在放电过程中插层现象的影响显着。模型预测表明,低电流密度的薄电极可产生最佳的放电性能,并且由于较高的活性材料利用率,具有原纤维形态的电池比具有传统平板电极的等效电池以更高的速率,电池电压,功率和能量密度提供电荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号