首页> 外文学位 >Interface-driven dynamics: Self-propulsion, coalescence, and thin-film evaporation.
【24h】

Interface-driven dynamics: Self-propulsion, coalescence, and thin-film evaporation.

机译:界面驱动的动力学:自推进,聚结和薄膜蒸发。

获取原文
获取原文并翻译 | 示例

摘要

Interface-driven fluid dynamics exists all around us and presents very interesting and challenging fluid dynamic problems. In this work, we investigate three such phenomena: self-propulsion of bubbles and the related corner flow, coalescence of droplets, and evaporation of thin films with free surface temperature variations.;We begin by investigating the corner flows relevant to self-propulsion of bubbles. In Chapter 2, we experimentally investigate the pressure drop which occurs in a rectangular microchannel with and without surfactants. We find that, contrary to previous results, when surfactants are added to such systems, the pressure drop across bubbles becomes dependent on their lengths, and the average velocity of the liquid phase greatly exceeds the velocity of the bubble---we refer to this phenomenon as corner flow. In Chapter 3, we continue our investigation of the corner flow to create a physical model of the dynamics based on Marangoni-driven bubble migration and lubrication flows. In Chapter 4, we apply corner flow to generate self-propulsion of bubbles in closed wedge-shaped geometries.;Next, in Chapter 5, we study a different phenomenon of droplet coalescence in a converging geometry. When moving through converging channels, as droplets begin to separate, they are prone to coalesce. Through domain perturbation and lubrication analysis, we investigate the local deformations of the droplets that facilitate contact.;Finally, again through domain perturbation, in Chapter 6, we examine the dynamics within a thin film of liquid on a uniformly heated or cooled textured substrate as well as the evolution of the generated surface deformations due to evaporation.;We approach these problems through simple experiments and various approximation techniques to arrive at physical models. Nonetheless, our resultant physical models are generally in good agreement with previously known experimental or numerical results and present novel, simplified approaches to these complicated dynamical problems.
机译:界面驱动的流体动力学存在于我们周围,并提出了非常有趣和具有挑战性的流体动力学问题。在这项工作中,我们研究了三种这样的现象:气泡的自推进和相关的角流,液滴的聚结以及具有自由表面温度变化的薄膜的蒸发。;我们从研究与自推进有关的角流开始。气泡。在第二章中,我们通过实验研究了在带有或不带有表面活性剂的矩形微通道中发生的压降。我们发现,与先前的结果相反,当将表面活性剂添加到此类系统中时,气泡上的压降变得取决于气泡的长度,液相的平均速度大大超过了气泡的速度-我们将其称为角流现象。在第3章中,我们将继续对拐角流动进行调查,以基于Marangoni驱动的气泡迁移和润滑流动创建动力学的物理模型。在第4章中,我们应用角流在闭合的楔形几何形状中生成气泡的自推进。接下来,在第5章中,我们研究了收敛几何形状中液滴聚结的不同现象。当通过会聚通道时,随着液滴开始分离,它们易于聚结。通过区域扰动和润滑分析,我们研究了液滴的局部变形,从而促进了接触。最后,再次通过区域扰动,在第6章中,我们研究了均匀加热或冷却的纹理化基材上液体薄膜内的动力学。以及由于蒸发而产生的表面变形的演变。;我们通过简单的实验和各种近似技术来解决这些问题,从而得出物理模型。但是,我们得到的物理模型通常与先前已知的实验或数值结果非常吻合,并提出了新颖,简化的方法来解决这些复杂的动力学问题。

著录项

  • 作者

    Lai, Ann.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Applied Mechanics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号