首页> 外文学位 >Simulation of thermal effects in semiconductor materials and devices.
【24h】

Simulation of thermal effects in semiconductor materials and devices.

机译:模拟半导体材料和器件中的热效应。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation deals with the thermal properties of semiconductors, the interaction between thermal and electrical transport, and the numerical methods for their simulation. The approach is based on the Boltzmann transport equation which is used to describe the behavior of both electrons and phonons and their interaction with each other, as well as their interaction with external potentials by coupling the transport equations with the Poisson equation. Several methods of solving the transport equations and simulating charge and thermal transport are developed and utilized. For one-dimensional systems like carbon nanotubes, the equations for transport and potentials are discretized in space, momentum, and time, and solved by an explicit upwind method. For the simulation of devices like MOSFETs, the full-band Monte Carlo method is extended to include the full phonon dispersion relationship and the transport of phonons, while the interactions between phonon modes are based on perturbation theory. Coupling between electrons and optical phonons, and their subsequent decay toward equilibrium, are found to play a large role in determining the temperature distributions in silicon devices. High electric fields cause strong emission of g-process longitudinal optical phonons. Their low velocity and the time taken to decay into intermediate longitudinal and transverse acoustic phonon pairs cause a peak in the temperature distribution in the drain region of MOSFETs. Anharmonic three-phonon decay and the use of the full dispersion relationship allow a detailed simulation of heat transfer and determination of temperature maps in silicon devices. Methods presented herein are applicable to a wide range of semiconductor materials including compound semiconductors, as well as many geometries such as bulk and nanowires.
机译:本文研究了半导体的热学性质,热和电输运之间的相互作用以及它们的数值模拟方法。该方法基于玻耳兹曼输运方程,该方程用于描述电子和声子的行为以及它们之间的相互作用,以及通过将输运方程与泊松方程耦合来描述电子与声子的相互作用以及它们与外部电势的相互作用。开发并利用了几种求解输运方程并模拟电荷和热输运的方法。对于像碳纳米管这样的一维系统,传输和势能方程在空间,动量和时间中离散,并通过显式迎风方法求解。对于MOSFET等器件的仿真,全频带蒙特卡罗方法已扩展为包括完整的声子色散关系和声子的传输,而声子模式之间的相互作用则基于微扰理论。发现电子与光子之间的耦合及其随后向平衡的衰减在确定硅器件中的温度分布方面起着重要作用。高电场会引起g过程纵向光学声子的强烈发射。它们的低速度以及衰减为中间的纵向和横向声子对所花费的时间会导致MOSFET漏极区中温度分布的峰值。非谐三声子衰减和全色散关系的使用允许对硅器件中的传热进行详细的仿真并确定温度图。本文提出的方法适用于多种半导体材料,包括化合物半导体,以及许多几何形状,例如体和纳米线。

著录项

  • 作者

    Aksamija, Zlatan.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号