首页> 外文学位 >Electrochemistry of stainless steel colonized by manganese-oxidizing bacteria.
【24h】

Electrochemistry of stainless steel colonized by manganese-oxidizing bacteria.

机译:锰氧化细菌定植的不锈钢的电化学。

获取原文
获取原文并翻译 | 示例

摘要

Microbial colonization of stainless steel (SS) surfaces can modify the electrochemical properties of the metal and increase the risk of corrosion damage. Two dominant effects of colonization--a several hundred millivolt noble shift in electrical potential and a two to three decade increase in cathodic current density--are implicated in the corrosion processes. These effects, collectively known as ennoblement, are attributed to the metabolic activity of attached microorganisms, however the mechanism by which microbial activity modifies cathodic reactions at the metal surface remains unclear. The present dissertation investigates the role of microbially generated oxidants in ennoblement and demonstrates that ennoblement is caused by manganic oxide biomineralization.; Microelectrode measurements of dissolved oxidants within biofilms on SS indicated that redox potential in the bulk biofilm did not change during ennoblement. A proposed mechanism involving oxygen electroreduction was also eliminated by showing that cathodic rates were independent of oxygen concentration. The findings directed attention to microbial production of surface-bound oxidants. Quantification of metal capacitance and surface-bound reactants suggested that metal oxides were involved in ennoblement and led to the hypothesis that ennoblement is caused by manganic oxide biodeposition.; Epifluorescence microscopy and bacterial culture methods confirmed the presence of manganese-oxidizing bacteria on ennobled SS. Manganese-rich surface deposits were confirmed by wet chemical and energy-dispersive x-ray analysis. SS coated with MnO{dollar}sb2{dollar} paste exhibited electrochemical properties that closely matched those of ennobled SS and elevated electrical potential decayed to pre-exposure values when bisulfite ion was used to reductively dissolve the surface manganese deposits. The biological mechanism of ennoblement was validated by inducing the effect using pure cultures of the manganese-oxidizing bacterium Leptothrix discophora. Coulometric titration and wet chemical analysis demonstrated that 15-75 nmoles cm{dollar}sp{lcub}-2{rcub}{dollar} of manganic oxide surface deposit shifts the potential of SS to a value near +350 mV versus the saturated calomel electrode.; Manganese-oxidizing bacteria have been widely reported at sites of SS corrosion. The present dissertation unifies this observation with the separate issue of ennoblement by linking both issues to a common cause, manganic oxide biomineralization. The finding provides a plausible explanation for the corrosive effects of manganese-oxidizing bacteria on SS.
机译:不锈钢(SS)表面的微生物定植会改变金属的电化学性能,并增加腐蚀损坏的风险。腐蚀过程涉及到殖民化的两个主要影响-几百毫伏的高贵电位变化和阴极电流密度增加两到三个十年。这些作用被统称为贵族效应,归因于附着的微生物的代谢活性,但是微生物活性修饰金属表面阴极反应的机理仍不清楚。本文研究了微生物产生的氧化剂在贵金属中的作用,并证明贵金属是由锰氧化物的生物矿化引起的。用微电极测量SS上生物膜内溶解的氧化剂,表明在高位过程中,整体生物膜中的氧化还原电势没有变化。通过显示阴极速率与氧气浓度无关,也消除了涉及氧气电解还原的拟议机制。这些发现将注意力集中在微生物产生的表面结合氧化剂上。对金属电容和表面结合的反应物的定量分析表明,金属氧化物参与了贵金属化反应,并提出了贵金属化是由锰氧化物生物沉积引起的假设。落射荧光显微镜和细菌培养方法证实了高贵SS上存在锰氧化细菌。富锰表面沉积物通过湿化学和能量色散X射线分析得到证实。当用亚硫酸氢根离子还原溶解锰表面沉积物时,涂有MnO {sb2 {dollar}浆料的SS的电化学性能与贵金属SS的电化学性能非常接近,并且升高的电势衰减到预暴露值。通过使用纯锰氧化细菌Leptothrix discophora的纯培养物诱导效应来验证高贵的生物学机制。库仑滴定法和湿化学分析表明,相对于饱和甘汞电极,氧化锰表面沉积物的15-75 nmole cm {dollar} sp {lcub} -2 {rcub} {dollar}将SS的电位移至+350 mV附近。;在SS腐蚀部位已广泛报道了锰氧化细菌。本论文通过将这两个问题与共同的原因-氧化锰生物矿化联系起来,将这一观点与单独的贵族问题统一起来。这一发现为锰氧化细菌对不锈钢的腐蚀作用提供了合理的解释。

著录项

  • 作者

    Dickinson, Wayne Harold.;

  • 作者单位

    Montana State University.;

  • 授予单位 Montana State University.;
  • 学科 Chemistry Analytical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号