首页> 外文学位 >A densification and flow stress evolution constitutive model for powder-based discontinuously reinforced aluminum.
【24h】

A densification and flow stress evolution constitutive model for powder-based discontinuously reinforced aluminum.

机译:粉末基不连续增强铝的致密化和流变应力演化本构模型。

获取原文
获取原文并翻译 | 示例

摘要

Discontinuously Reinforced Aluminum (DRA) composites are a class of material that has generated much interest in the technical community due to its combination of outstanding mechanical properties and lighter weight with respect to steel. The relatively high processing costs of DRA material however, has restricted its widespread use in many automotive and aerospace applications. The development of a densification and flow stress evolution constitutive model for a DRA composite material is presented. A porous yield criterion based on the Gurson micromechanical model, as modified by Tvergaard, Richmond and Smelser, and Wang is used to predict the densification response of the powder processed composite material. The evolution of flow stress during axisymmetric compression testing has been modeled using the hyperbolic sine law and single internal state variable theory. The importance of microstructural evolution mechanisms such as precipitation, recrystallization, creep driven recovery, and deformation driven heating on the deformation of a 2xxx aluminum alloy and a 2xxx/SiC/20p DRA composites is discussed. The material constitutive model has then been imbedded in the ABAQUS finite element method package to allow realistic deformation processing simulations of a powder preform composed of the modeled DRA composite material.
机译:不连续增强铝(DRA)复合材料是一类材料,由于其出色的机械性能和相对于钢的较轻重量而结合在一起,引起了技术界的广泛关注。但是,DRA材料的相对较高的加工成本限制了其在许多汽车和航空航天应用中的广泛使用。提出了一种DRA复合材料的致密化和流变应力本构模型。由Tvergaard,Richmond和Smelser和Wang修改的基于Gurson微力学模型的多孔屈服准则可用于预测粉末加工复合材料的致密化响应。使用双曲正弦定律和单一内部状态变量理论对轴对称压缩试验期间的流动应力演化进行了建模。讨论了诸如沉淀,再结晶,蠕变驱动的恢复以及变形驱动的加热等微观结构演变机制对2xxx铝合金和2xxx / SiC / 20p DRA复合材料的变形的重要性。然后将材料本构模型嵌入ABAQUS有限元方法包中,以对由模型DRA复合材料组成的粉末预成型坯进行实际的变形处理仿真。

著录项

  • 作者

    Hilinski, Erik John.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 384 p.
  • 总页数 384
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号