首页> 外文学位 >Mechanistic and product structure formation studies in the combustion synthesis of advanced materials.
【24h】

Mechanistic and product structure formation studies in the combustion synthesis of advanced materials.

机译:先进材料燃烧合成中的机理和产品结构形成研究。

获取原文
获取原文并翻译 | 示例

摘要

Combustion synthesis is a novel technique that has been used to synthesize a wide variety of materials including ceramics, ceramic-metal composites, intermetallics and nanophase materials. It is based on the principle that once initiated by an external heat source, a highly exothermic reaction can self-propagate through the sample without requiring additional heat. The unique combustion synthesis features of extremely fast heating rates ({dollar}10sp5-10sp6{dollar} K/s), high temperatures (2500-3500 K) and short reaction times (on the order of a few seconds) have the potential to yield materials with novel structures and properties. However, in order to control this technique effectively, knowledge of combustion synthesis mechanisms is of critical importance.; The mechanisms of various systems were investigated using complementary techniques including systematic studies of processing variables, particle-foil experiments, quenching and time-resolved X-ray diffraction (TRXRD). In the particle-foil experiment, a lower melting particle reactant placed on the foil of a refractory reactant was heated rapidly by passing a current through the foil. This experiment provided a suitable experimental model for isolating the initial step in the mechanism of melting and spreading of one reactant. Quenching was achieved by reacting a wedge-shaped sample imbedded in a copper block in which the propagating combustion front progressively extinguished while traveling to the apex, resulting in regions reacted to different extents. Analysis of the quenched regions provided microstructural and phase composition information about the structure formation sequence. The TRXRD technique allowed a continuous in situ observation of phase composition during the reaction.; The utilization of the various complementary techniques has led to the identification of structure formation mechanisms of various silicide and intermetallic aluminide compounds. A general classification of the mechanisms based on the melting points of reactants and products relative to the maximum reaction temperature was obtained. The classification provides an experimental basis for developing a generalized theoretical model of the combustion synthesis process. This model will provide principles for scale-up and ultimately, lead to the design of advanced materials with tailored properties.
机译:燃烧合成是一种新颖的技术,已用于合成多种材料,包括陶瓷,陶瓷金属复合材料,金属间化合物和纳米相材料。它基于以下原理:一旦由外部热源引发,高度放热的反应可以在样品中自蔓延,而无需额外的热量。独特的燃烧合成功能具有极快的加热速率({dollar} 10sp5-10sp6 {dollar} K / s),高温(2500-3500 K)和较短的反应时间(几秒钟)。产生具有新颖结构和特性的材料。然而,为了有效地控制该技术,燃烧合成机理的知识至关重要。使用补充技术研究了各种系统的机理,包括对工艺变量进行系统研究,颗粒箔实验,淬灭和时间分辨X射线衍射(TRXRD)。在颗粒箔实验中,通过使电流流过箔,从而将置于难熔反应物箔上的较低熔点的颗粒反应物快速加热。该实验提供了合适的实验模型,用于分离一种反应物的熔化和扩散机理中的初始步骤。淬火是通过使嵌入铜块中的楔形样品反应而实现的,其中传播的燃烧前沿在到达顶点时逐渐熄灭,导致区域发生不同程度的反应。淬火区域的分析提供了有关结构形成顺序的微观结构和相组成信息。 TRXRD技术允许在反应过程中连续原位观察相组成。各种互补技术的利用已导致鉴定出各种硅化物和金属间铝化物化合物的结构形成机理。获得了基于反应物和产物相对于最高反应温度的熔点的机理的一般分类。该分类为开发燃烧合成过程的广义理论模型提供了实验基础。该模型将提供放大的原理,并最终导致具有定制属性的高级材料的设计。

著录项

  • 作者

    Kachelmyer, Cynthia Rose.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号