首页> 外文学位 >Physics-based thermal impedance models for the simulation of self-heating in semiconductor devices and circuits.
【24h】

Physics-based thermal impedance models for the simulation of self-heating in semiconductor devices and circuits.

机译:基于物理的热阻抗模型,用于仿真半导体器件和电路中的自热。

获取原文
获取原文并翻译 | 示例

摘要

Inherent in the operation of semiconductor devices is self-heating, an increase in operating temperature due to a device's own power dissipation. The magnitude of the self-heating effect can be quantified by the value of the thermal impedance, which describes the dynamic response of the device temperature to variations in device power. The thermal impedance is determined primarily by material properties and device structure. The implication of the self-heating effect is that the change in temperature can alter the operating characteristics of a device, which in turn, can affect circuit performance.;The primary focus of this dissertation is the development of physics-based models for the thermal impedances of semiconductor devices. Models for the thermal impedances of bipolar and field-effect transistors, on both bulk and silicon-on-insulator (SUI) substrates, are presented. All of the thermal impedance models were derived from the time-dependent heat conduction equation, resulting in compact analytic expressions for the thermal impedances. The physical nature of the thermal impedance models allows them to scale with the device structure and material properties, and they successfully reproduce results from both measurements and three-dimensional finite-element simulations. A circuit model for thermal coupling between transistors in a common substrate is also presented. The coupling model was used in conjunction with the bulk bipolar thermal impedance model to extract a lumped electrothermal model for multiple-emitter bipolar transistors.;The secondary objective of this work is the provision of an approach for incorporating these models into circuit simulators. It has been shown that the thermal impedance models can be represented by thermal equivalent circuits made up of resistors and capacitors, making them suitable for efficient circuit simulation. The computer program TIPP (Thermal Impedance Pre-Processor) is introduced. TIPP was developed to provide circuit simulators with convenient algorithms for generating thermal equivalent circuits. TIPP can calculate the component values for thermal equivalent circuits from either physical models or measured data, and is easily modified to interface with different circuit simulators.
机译:半导体器件工作中固有的是自发热,这是由于器件自身的功耗导致工作温度升高。可以通过热阻抗的值来量化自热效应的大小,该热阻抗的值描述了器件温度对器件功率变化的动态响应。热阻主要由材料特性和器件结构决定。自热效应的含义是温度的变化会改变器件的工作特性,进而影响电路的性能。本论文的主要重点是基于物理的热学模型的开发。半导体器件的阻抗。提出了在块状和绝缘体上硅(SUI)衬底上的双极型和场效应晶体管的热阻模型。所有热阻模型均从与时间有关的热传导方程式导出,从而得出了热阻的紧凑解析表达式。热阻抗模型的物理性质使它们可以随器件结构和材料特性进行缩放,并且可以成功地从测量和三维有限元模拟中复制结果。还提出了用于在公共衬底中的晶体管之间进行热耦合的电路模型。耦合模型与体双极热阻模型结合使用,为多发射极双极晶体管提取集总电热模型。这项工作的第二个目的是提供一种将这些模型整合到电路仿真器中的方法。已经表明,热阻抗模型可以由由电阻器和电容器组成的热等效电路表示,使其适合于高效的电路仿真。介绍了计算机程序TIPP(热阻抗预处理器)。 TIPP的开发旨在为电路仿真器提供方便的算法,以生成热等效电路。 TIPP可以根据物理模型或测量数据来计算热等效电路的组件值,并且可以轻松修改以与不同的电路仿真器接口。

著录项

  • 作者

    Brodsky, Jonathan Scott.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Electrical engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 259 p.
  • 总页数 259
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号