首页> 外文学位 >Application of DEM to micro-mechanical theory for large deformations of granular media.
【24h】

Application of DEM to micro-mechanical theory for large deformations of granular media.

机译:DEM在细颗粒介质大变形的微观力学理论中的应用。

获取原文
获取原文并翻译 | 示例

摘要

A constitutive theory is developed for granular material undergoing arbitrarily large deformations. A three-dimensional discrete element model (DEM) was developed to simulate granular material. The computational efficiency of the discrete element model was improved to allow for modeling of large particle systems. The need for large particle simulations was in order to develop an ability to model laboratory experiments on a one-to-one basis so that the discrete element model could be evaluated against real soils. A comparison was made between laboratory experiments involving very large discontinuous deformations in sand and numerical simulations, using a large-scale DEM computation. The magnitude of the simulation provided a unique opportunity to assess the validity of the DEM, based on experimental results. The agreement between the experimental and simulated particle motions in the plowing experiment indicates that many details not captured by the simplistic particle interaction model may not be relevant in statistically large assemblies.; Once it was established that the discrete element method provided a reasonable model for real granular material, an averaging scheme to convert properties local to the particles (e.g. mass, momentum) into continuum attributes (e.g. density, velocity gradients) was developed. From this averaging scheme a new constitutive law was developed to model large deformation of granular material. It is concluded that without a micro-mechanical approach based on physical measurements, a satisfactory theory would be difficult to develop. Measurement at the micro-mechanical level is, of course, not possible with real materials. The Discrete Element Method (DEM) is used to simulate a particulate medium from which micro-mechanical quantities can be obtained. The analysis begins with consideration of a smoothing of the DEM quantities, which amounts to application of a weighted residual approximation of the difference equations governing the DEM simulations. The analysis carries with it relationships needed to create a coarsened particulate system as a numerical approximation to the granular media. The momentum balance equation of the smoothed continuum is non-local but reduces to the familiar differential form of classical local continuum mechanics in the asymptotic limit when particle size is small relative to the domain size. Similarly, a deformation gradient can be defined that is a thermodynamic conjugate to the (smoothed) Cauchy stress. The stress is obtained as the mean of the outer product of inter-particle force and contact vectors by application of the virtual work principle. The evolution of contact properties is not readily determined from averaged particle movements because of non-affine components of particle interaction. However, the smoothing process eliminates spatial detail and only the statistical descriptions of particle interactions are needed to evaluate the equations of motion. The key to a continuum theory for granular media, therefore, is to relate the statistics of particle interactions to the kinematics of the smoothed system.
机译:本构理论被开发用于经历任意大变形的粒状材料。开发了三维离散元素模型(DEM)以模拟颗粒材料。离散元素模型的计算效率得到了提高,可以对大型粒子系统进行建模。大颗粒模拟的需求是为了发展一种以一对一的方式对实验室实验建模的能力,以便可以针对真实土壤评估离散元素模型。使用大规模DEM计算,对涉及砂中非常大的不连续变形的实验室实验与数值模拟进行了比较。根据实验结果,模拟的大小为评估DEM的有效性提供了独特的机会。犁耕实验中的实验运动与模拟的运动之间的一致性表明,简单的粒子相互作用模型未捕获的许多细节在统计上较大的装配中可能不相关。一旦确定了离散元素方法为真实的颗粒材料提供了合理的模型,便开发了一种平均方案,将颗粒局部的特性(例如质量,动量)转换为连续体属性(例如密度,速度梯度)。从这种平均方案中,开发了一种新的本构定律来模拟颗粒材料的大变形。结论是,如果没有基于物理测量的微机械方法,令人满意的理论将难以发展。当然,在真实材料下不可能进行微机械水平的测量。离散元素方法(DEM)用于模拟可从中获得微机械量的颗粒介质。分析开始时考虑DEM量的平滑,这等于应用了控制DEM模拟的差分方程的加权残差近似值。该分析带有建立粗化颗粒系统所需的关系,以作为颗粒介质的数值近似值。平滑连续体的动量平衡方程是非局部的,但是当粒子尺寸相对于畴尺寸较小时,在渐近极限中可简化为经典局部连续体力学的熟悉的微分形式。类似地,可以定义变形梯度,该变形梯度是与(平滑的)柯西应力的热力学共轭。通过应用虚拟功原理,获得应力作为粒子间力和接触矢量的外积的平均值。由于粒子相互作用的非仿射成分,很难从平均粒子运动确定接触特性的演变。但是,平滑过程消除了空间细节,仅需要粒子相互作用的统计描述即可评估运动方程。因此,颗粒介质连续理论的关键是将粒子相互作用的统计信息与平滑系统的运动学联系起来。

著录项

  • 作者

    Horner, David Allan.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Civil.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号