首页> 外文学位 >Hidden variables and nonlocality in quantum mechanics.
【24h】

Hidden variables and nonlocality in quantum mechanics.

机译:量子力学中的隐变量和非局部性。

获取原文
获取原文并翻译 | 示例

摘要

Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory--that of David Bohm--exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions.;We first discuss the earliest analysis of hidden variables--that of von Neumann's theorem--and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call "spectral incompatibility". We develop further insight into the concepts involved in these two theorems by investigating a special quantum mechanical experiment first described by David Albert. We review the Einstein-Podolsky-Rosen paradox, Bell's theorem, and Bell's later argument that these imply that quantum mechanics is irreducibly nonlocal.;The paradox of Einstein, Podolsky, and Rosen was generalized by Erwin Schrodinger in the same paper where his famous 'cat paradox' appeared. We show that Schrodinger's conclusions can be derived using a simpler argument--one which makes clear the relationship between the quantum state and the 'perfect correlations' exhibited by the system. We use Schrodinger's EPR analysis to derive a wide variety of new quantum nonlocality proofs. These proofs share two important features with that of Greenberger, Horne, and Zeilinger. First, they are of a deterministic character, i.e., they are 'nonlocality without inequalities' proofs. Second, the quantum nonlocality results we develop may be experimentally verified so that one need only observe the 'perfect correlations' between the appropriate observables. This latter feature serves to contrast these proofs with EPR/Bell nonlocality, the laboratory confirmation of which demands not only the observation of perfect correlations, but also the observations required to test whether 'Bell's inequality' is violated. The 'Schrodinger nonlocality' proofs we give differ from the GHZ proof in that they apply to two-component composite systems, while the latter involves a composite system of at least three-components. In addition, some of the Schrodinger proofs involve classes of observables larger than that addressed in the GHZ proof. (Abstract shortened by UMI.).
机译:尽管戴维·鲍姆(David Bohm)成功构建了这种理论,并且约翰·贝尔(John S. Bell)强烈支持该理论,但大多数物理学家对量子理论的“隐变量”解释持怀疑态度。引起怀疑的第一个原因涉及某些数学定理(冯·诺伊曼定理,格里森定理,科兴和Specker定理以及贝尔定理),这些定理可以应用于隐藏变量问题。这些定理通常被认为证明了隐藏变量确实是“不可能的”,因为它们不能复制量子力学的预测。但是,许多没有得出如此强有力结论的人都接受了隐藏变量已显示出令人难以置信的复杂特征的事实。第二个问题是隐变量理论的最复杂的例子-David Bohm的例子-展示了非局部性,即一个地方发生的事件的后果可以立即传播到其他地方。但是,所讨论的数学定理和非局域性都没有减损量子理论中隐藏变量解释的重要性。非局域性存在于量子力学本身中,并且是与量子力学预测相符的任何理论的必需特征。我们首先讨论对隐变量的最早分析,即冯·诺伊曼定理的分析,然后回顾约翰·S·贝尔的反驳冯·诺伊曼(von Neumann)的“不可能证明”。我们回顾并详细阐述了贝尔关于格里森定理,科兴和斯佩克定理的论点。贝尔认为,后面的这些定理并不意味着隐藏变量的解释是站不住脚的,而是这些理论必须表现出语境性,即它们必须允许测量结果依赖于被测系统和测量仪器的特性。我们通过指出格里森定理和科兴定理和斯佩克定理的涵义,证明它们证明了我们称之为“谱不兼容”的结果,从而展示了一种新的方式来理解格里森定理和科钦和斯佩克定理的含义。通过研究由David Albert首次描述的特殊量子力学实验,我们可以进一步了解这两个定理中涉及的概念。我们回顾了爱因斯坦-波多尔斯基-罗森悖论,贝尔定理和贝尔后来的论点,这些论点暗示量子力学是不可还原的非局域性。猫悖论”出现了。我们表明,可以使用一个更简单的论点来得出薛定derived的结论-该论点明确了量子态与系统展现的``完美相关性''之间的关系。我们使用薛定inger的EPR分析来推导各种新的量子非局域性证明。这些证明与Greenberger,Horne和Zeilinger具有两个重要特征。首先,它们具有确定性,即是“没有不平等的非局部性”证明。其次,我们开发的量子非局域性结果可以通过实验验证,因此人们只需要观察适当的可观测量之间的“完美相关性”即可。后一个特征用来将这些证据与EPR /贝尔非局部性进行对比,实验室的确认不仅要求观察完美的相关性,还要求检验是否违反“贝尔不平等”的观察。我们提供的“ Schrodinger非局域性”证明与GHZ证明的不同之处在于,它们适用于两组分的复合系统,而后者涉及至少三组分的复合系统。此外,某些薛定inger证明涉及的可观察类比GHZ证明所涉及的要大。 (摘要由UMI缩短。)。

著录项

  • 作者

    Hemmick, Douglas Lloyd.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号