首页> 外文学位 >Towards High Efficiency Gallium Arsenide Phosphide Solar Cells on Silicon.
【24h】

Towards High Efficiency Gallium Arsenide Phosphide Solar Cells on Silicon.

机译:迈向硅上的高效砷化镓磷化太阳能电池。

获取原文
获取原文并翻译 | 示例

摘要

Solar technologies with high efficiency and low cost are essential for photovoltaic electricity generation to reach grid parity with traditional fossil fuel sources. While 90% of the solar modules sold in 2014 were based on economical single-junction Si technology, the efficiency has hit an efficiency plateau close to 26% in the past decade. In contrast, III-V compound semiconductor solar cells now hold conversion efficiency records exceeding 45%, though at fir higher manufacturing costs than Si The integration of high efficiency III-V compound solar materials with cost effective Si substrates appear to be a promising path towards high efficiency at a reasonable cost. This concept has the potential to leverage decades of established Si manufacturing processes and infrastructure.;In particular, cascading an epitaxial Gallium Arsenide Phosphide (GaAs yP1-y) top cell with bandgap energy of 1.6-1.8eV onto a 1.1eV Si subcell can enable a theoretical efficiency exceeding 40%, -'10% (absolute) higher than that for Si alone. While Si technology is mature, the GaAs yP1-y material system was relatively unexplored prior to this work. GaP is the III-V material with the closest lattice constant to Si, allowing a convenient compositional grading path from GaP/Si to GaAs yP1-y. Recent advances in GaP/Si template growth have eliminated defects such as anti-phase domains (APDs), stacking faults (SFs) and microtwins (MTs). However, threading dislocations are unavoidable in such a tandem cell due to lattice mismatch, and until recently the threading dislocation density (TDD) of GaAsyP1-y on Si was 108 cm -2 with high bandgapvoltage offsets (Woc) of 0.7-0.8 V, where ~0.4 V is the semi-empirical limit for Woc. GaAsyP 1-y/GaAs solar cells with TDD as low as 3x105 cm -2 have exhibited low Woc values below 0.5 V, close to the semi-empirical limit. Due to the high Woc, the highest efficiencies of GaAs yP1-y/GaP/Si solar cells prior to this work were ~10%. These early results highlight the significance of minimizing TDD due to dislocation-mediated non-radiative recombination. The ability to accurately quantify TDD in the starting GaP/Si templates and final GaAsyP1-y solar cells are extremely important in the efforts to achieve lower TDD and higher efficiency.;In this work, we set out to develop low TDD and low Woc single junction GaAsyP1- y/GaP/Si solar cells to enable a clear path towards high efficiency III-V on Si dual-junction solar cells. In order to meet this goal, we developed defect selective etching (DSE) techniques to quantify TDD accurately for both GaAsyP1-y solar cells and GaP/Si substrates. Additionally, we built a suite of complementary TDD characterization techniques including electron beam induced current (EBIC) and electron channeling current (ECCI) to provide robust feedback to the material growth process.;To reduce the TDD of GaP/Si and GaAsyP1-y/GaP/Si, we explored the effect of different growth parameters in the dislocation dynamics model; growth temperature, growth rate and grading rate. Analysis of the strain relaxation dynamics of 500 nm GaP/Si layers proved that TDD is highly sensitive to the initial growth temperature and growth rate and can be controlled by balancing the effects of dislocation nucleation and glide. Subsequently, we showed the direct benefits of lower starting GaP/Si template TDD on final GaAsyP1-y solar cell TDD and Woc.;The dislocation nucleation and glide regimes observed in GaP/Si were transferrable to GaAsyP1-y/GaP/Si We demonstrate that the GaAsyP1-y/GaP/Si TDD can also be controlled by growth temperature and grading rate. Using the knowledge of strategies for TDD reduction in both GaP/Si and GaAsyP1-y/GaP/Si, we achieved the lowest TDD values on GaAsyP1-y/GaP/Si of 4.18-4.64x10 6 cm-2, with a corresponding low Woc of 0.54-0.55 V, the best reported for GaAsP/GaP/Si solar cells to date. Device design improvements of a thinner emitter and wide-bandgap InAIP window layer enabled Jsc= 13.1-13.3 mA/cm2 and peak internal quantum efficiency, IQE= 98.4%. The overall single junction efficiencies of 11.5-12.0% are the best reported for GaAsyP1-y/GaP/Si single junction solar cells. The results in this work demonstrate a clear path towards high efficiency III-V on Si dual-junction solar cells.
机译:高效,低成本的太阳能技术对于光伏发电与传统化石燃料源的电网平价至关重要。虽然2014年售出的太阳能模块中有90%基于经济的单结硅技术,但在过去十年中,效率已达到近26%的效率平台。相比之下,尽管III-V化合物半导体太阳能电池的制造成本比Si高,但其转换效率记录现在已超过45%。将高效III-V化合物太阳能材料与具有成本效益的Si基板集成在一起似乎是一条有希望的发展之路效率高,成本合理。这个概念有可能利用数十年建立的硅制造工艺和基础设施。特别是,将具有1.6-1.8eV带隙能的外延砷化镓磷化(GaAs yP1-y)顶部电池级联到1.1eV Si子电池上可以实现理论效率超过40%,比仅Si的理论效率高-'10%(绝对值)。尽管硅技术已经成熟,但在进行这项工作之前还没有对GaAs yP1-y材料系统进行过探索。 GaP是III-V材料,具有最接近Si的晶格常数,从而允许从GaP / Si到GaAs yP1-y的便捷成分分级路径。 GaP / Si模板生长的最新进展已消除了诸如反相域(APD),堆垛层错(SF)和微孪晶(MT)等缺陷。然而,由于晶格失配,在这样的串联电池中不可避免地发生了螺纹位错,直到最近,GaAsyP1-y在Si上的螺纹位错密度(TDD)仍为108 cm -2,带隙电压偏移(Woc)为0.7-0.8 V,其中〜0.4 V是Woc的半经验极限。 TDD低至3x105 cm -2的GaAsyP 1-y / GaAs太阳能电池具有低于0.5 V的低Woc值,接近半经验极限。由于高Woc,在此工作之前,GaAs yP1-y / GaP / Si太阳能电池的最高效率约为10%。这些早期结果强调了由于位错介导的非辐射重组而使TDD最小化的重要性。准确量化起始GaP / Si模板和最终GaAsyP1-y太阳能电池中TDD的能力在实现更低TDD和更高效率的努力中极为重要。;在这项工作中,我们着手开发低TDD和低Woc单晶。结GaAsyP1- y / GaP / Si太阳能电池,为实现Si双结太阳能电池上的高效率III-V提供了一条清晰的道路。为了实现此目标,我们开发了缺陷选择蚀刻(DSE)技术来精确量化GaAsyP1-y太阳能电池和GaP / Si衬底的TDD。此外,我们建立了一套互补的TDD表征技术,包括电子束感应电流(EBIC)和电子沟道电流(ECCI),以为材料生长过程提供可靠的反馈。降低GaP / Si和GaAsyP1-y /的TDD GaP / Si,我们探索了位错动力学模型中不同生长参数的影响;生长温度,生长速度和分级速度。对500 nm GaP / Si层的应变弛豫动力学分析表明,TDD对初始生长温度和生长速率高度敏感,并且可以通过平衡位错形核和滑移的影响来控制。随后,我们展示了较低的起始GaP / Si模板TDD对最终的GaAsyP1-y太阳电池TDD和Woc的直接好处;在GaP / Si中观察到的位错形核和滑移机制可转移到GaAsyP1-y / GaP / Si中。 GaAsyP1-y / GaP / Si TDD也可以通过生长温度和分级速率来控制。利用降低GaP / Si和GaAsyP1-y / GaP / Si中TDD的策略知识,我们获得了GaAsyP1-y / GaP / Si上最低的TDD值,为4.18-4.64x10 6 cm-2,相应地较低Woc为0.54-0.55 V,这是迄今为止GaAsP / GaP / Si太阳能电池的最佳记录。器件设计的改进使发射极更薄,带隙InAIP窗口层更薄,使Jsc = 13.1-13.3 mA / cm2,峰值内部量子效率IQE = 98.4%。对于GaAsyP1-y / GaP / Si单结太阳能电池,整体单结效率为11.5-12.0%,是最好的报告。这项工作的结果证明了在Si双结太阳能电池上实现高效率III-V的明确途径。

著录项

  • 作者

    Nay Yaung, Kevin.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Environmental engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号