首页> 外文学位 >Formation and characterization of hollow-fiber membranes for gas separation.
【24h】

Formation and characterization of hollow-fiber membranes for gas separation.

机译:用于气体分离的中空纤维膜的形成和表征。

获取原文
获取原文并翻译 | 示例

摘要

The formation of asymmetric hollow fibers for applications as state-of-the-art gas separation membranes involves an understanding of how numerous processing variables affect a wide variety of essential morphological properties. Several of these morphological features are large in scale compared to those features controlling the separation of gaseous species. These large-scale properties are described in this work as macroscopic if they can be characterized using optical microscopy. Properties requiring scanning electron microscopy for sufficient characterization are described as microscopic.; Macroscopic and microscopic properties can be characterized quickly compared to the submicroscopic features controlling permeation; therefore, general frameworks aiding in establishing and controlling these large-scale features have been developed in this work. If these large-scale properties are not sufficiently controlled, several detrimental effects can occur, including fiber breaks, oscillations in fiber diameter, and large void regions in the microporous morphology (i.e., macrovoids). These detrimental features not only influence permeation properties but also mechanical integrity. Examples of catastrophic fiber deformation resulting from the implementation of excessive transmembrane pressure differences are provided.; The development of a practical framework for the establishment and control of submicroscopic features is currently inhibited by the lack of satisfactory characterization techniques. To characterize large surface areas of dehydrated fiber, permeation experiments analogous to actual membrane applications are often performed. This approach imposes rather large transmembrane pressure differences and as a result, the mean free path of gaseous species in a given asymmetric morphology can range from tens to hundreds of angstroms. By imposing relatively small transmembrane pressure differences, as demonstrated in this work, the mean free path is more uniform throughout a given asymmetric morphology. This novel approach serves as a first step toward understanding the fundamentals of gas permeation in these complex asymmetric morphologies. Moreover, it also aids in the development of permeation techniques to characterize the subtle submicroscopic differences, which control final membrane permeation properties.
机译:用作最先进的气体分离膜的不对称中空纤维的形成涉及对众多加工变量如何影响多种基本形态特性的理解。与控制气态物种分离的那些特征相比,这些形态特征中的几个具有较大的规模。如果可以使用光学显微镜对其进行表征,则这些大规模特性在本工作中被描述为宏观特性。需要扫描电子显微镜以充分表征的性质被描述为微观的。与控制渗透的亚微观特征相比,可以快速表征宏观和微观性质。因此,在这项工作中已经开发了有助于建立和控制这些大规模特征的通用框架。如果不能充分控制这些大规模的特性,则可能发生几种有害的影响,包括纤维断裂,纤维直径的振荡以及微孔形态(即大孔隙)中的大空隙区域。这些有害特征不仅影响渗透性能,而且还影响机械完整性。提供了由于过度的跨膜压差而导致的灾难性纤维变形的例子。缺乏令人满意的表征技术目前阻碍了建立和控制亚微观特征的实用框架的发展。为了表征脱水纤维的大表面积,经常进行类似于实际膜应用的渗透实验。该方法施加了相当大的跨膜压差,结果,在给定的不对称形态下,气态物质的平均自由程可在数十埃至数百埃之间。通过施加相对较小的跨膜压差(如本工作所示),在给定的不对称形态中,平均自由程更加均匀。这种新颖的方法是迈向了解这些复杂的不对称形态中气体渗透原理的第一步。此外,它还有助于渗透技术的发展,以表征细微的亚显微差异,从而控制最终的膜渗透特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号