首页> 外文学位 >Identification and Characterization of Genes Involved in Biofilm Growth and Antibiotic Tolerance in Streptococcus pyogenes.
【24h】

Identification and Characterization of Genes Involved in Biofilm Growth and Antibiotic Tolerance in Streptococcus pyogenes.

机译:化脓链球菌生物膜生长和抗生素耐受性相关基因的鉴定和表征。

获取原文
获取原文并翻译 | 示例

摘要

Group A Streptococcus (GAS; Streptococcus pyogenes ) causes an array of diseases of varying severity resulting in over 500,000 deaths annually. GAS is invariably susceptible to penicillin in vitro, but treatment failures still occur. This microbial pathogen has been previously shown to form biofilms (defined as complex microbial communities that adhere to a surface, secrete an extracellular matrix, and demonstrate tolerance to antimicrobial agents). However, there is a paucity of data regarding the specific role of this phenotype in GAS pathogenesis.;In preliminary studies, we found that the GAS biofilm mode of growth was tolerant to antibiotics when compared to their planktonic counterparts in vitro and in a mouse model of GAS infection. To identify the gene products that are involved in biofilm growth and antibiotic tolerance in GAS, planktonically-grown bacteria were compared to bacteria grown in an in vitro biofilm. An unbiased global transcriptomic, proteomic, and immunoproteomic approach identified differentially-regulated genes and proteins that may contribute to biofilm growth in S. pyogenes. Among the proteins highly upregulated during biofilm growth were those within the arc operon, which is important for maintaining pH homeostasis in response to acid stress. Further investigation into the function of the arc operon through the use of insertion mutants revealed the operon to have a biofilm-specific role both in growth and susceptibility to antibiotics. Elimination of Arc protein production resulted in a return of penicillin sensitivity of GAS biofilms in a pH-dependent manner in vitro, but did not alter penicillin susceptibility in planktonic culture. This return to penicillin sensitivity was also apparent in a mouse model of nasopharyngeal infection, demonstrating that the biofilm phenotype, and specifically the arc operon, could play a key role in the clinical antibiotic treatment failure observed with GAS.;These studies are the first to: (1) show recalcitrance of antimicrobial therapy in a relevant GAS infection model, (2) use the combined global approaches of RNAseq, LCMS/ MS, and immunoproteomics to study microbial biofilms, (3) identify key factors in the antibiotic tolerance in GAS biofilms both in vitro and in vivo, and (4) to readily demonstrate a potential cause of clinical recalcitrance of GAS to clearance by antimicrobial agents.
机译:A组链球菌(GAS;化脓性链球菌)导致一系列严重程度不同的疾病,每年导致500,000多例死亡。 GAS在体外总是易受青霉素影响,但仍会发生治疗失败。先前已证明这种微生物病原体会形成生物膜(定义为附着在表面,分泌细胞外基质并表现出对抗菌剂耐受性的复杂微生物群落)。但是,关于该表型在GAS发病机理中的特定作用的数据很少。在初步研究中,我们发现与体外和小鼠模型中的浮游生物相比,GAS生物膜的生长方式对抗生素具有耐受性。 GAS感染。为了鉴定GAS中涉及生物膜生长和抗生素耐受性的基因产物,将浮游生长的细菌与体外生物膜中生长的细菌进行了比较。一种无偏见的全球转录组学,蛋白质组学和免疫蛋白质组学方法确定了差异调节的基因和蛋白质,这些基因和蛋白质可能有助于化脓性链球菌的生物膜生长。在生物膜生长过程中高度上调的蛋白质是弧操纵子中的蛋白质,这对于响应酸胁迫维持pH稳态非常重要。通过使用插入突变体对弧操纵子的功能进行的进一步研究表明,操纵子在生长和对抗生素的敏感性中都具有生物膜特异性作用。消除Arc蛋白的产生导致GAS生物膜对青霉素的敏感性在体外以pH依赖的方式恢复,但并没有改变浮游培养中青霉素的敏感性。对青霉素敏感性的这种恢复在鼻咽感染的小鼠模型中也很明显,这表明生物膜表型,尤其是反角操纵子,可能在GAS观察到的临床抗生素治疗失败中起关键作用。 :(1)在相关的GAS感染模型中显示出抗微生物治疗的顽固性;(2)使用RNAseq,LCMS / MS和免疫蛋白质组学的组合整体方法研究微生物生物膜,(3)确定GAS中抗生素耐受性的关键因素生物膜在体外和体内,和(4)易于证明GAS难以通过抗菌剂清除的潜在原因。

著录项

  • 作者单位

    University of Maryland, Baltimore.;

  • 授予单位 University of Maryland, Baltimore.;
  • 学科 Microbiology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

  • 入库时间 2022-08-17 11:48:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号