首页> 外文学位 >Consequences of wave-induced water motion to nearshore macroalgae.
【24h】

Consequences of wave-induced water motion to nearshore macroalgae.

机译:波引起的水运动对近岸大型藻类的后果。

获取原文
获取原文并翻译 | 示例

摘要

Details of one aspect of the interaction of wave-induced water motion with benthic organisms are explored, in particular the potential of large water accelerations produced by breaking waves to place size constraints on intertidal seaweeds. A simple theoretical model is developed that predicts "optimal" sizes of plants based on their strength, morphology, and hydrodynamic environment, and these predicted optimal sizes are compared to sizes of plants in nature. Results imply that the dimensions of intertidal macroalgae might be limited by forces associated with fluid accelerations. However, subsequent data show this hypothesis to be overly simplistic. Although measurements of surf-zone flows verify that exceptional accelerations indeed occur in intertidal regions, additional recordings of forces imposed on organisms by breakers suggest that large hydrodynamic accelerational forces do not in fact act commonly on intertidal plants and animals. Thus it appears unlikely that wave-produced fluid accelerations actually play a major role in limiting the sizes of littoral organisms. A more detailed analysis suggests that the absence of large water acceleration-induced forces arises a consequence of the short temporal and (in particular) small spatial scales of surf-zone accelerations. Field measurements also indicate that many of the largest loads imposed on intertidal organisms are "impact" type forces associated with waves crashing directly on emersed plants and animals. Consequences of such forces are explored through the use of a numerical model that tracks the propagation of brief pulses through an idealized viscoelastic "organism." Results support the concept that low stiffness in macroalgae provides an alternative low-strength strategy for coping with large but transient forces. Additional implications of low stiffness, in particular the tendency of seaweeds to deflect in flow, are further examined in a case study of two subtidal kelps. Here it is shown that inertial forces associated with changes in the momentum of swaying plants can strongly influence the stresses they experience. Estimates of turbulence intensity and energy dissipation rate are also extracted from the flow recordings and potential biological ramifications of the extreme turbulence characteristic of the surf zone are discussed.
机译:探索了波浪引起的水运动与底栖生物相互作用的一个方面的细节,特别是通过破坏波浪将潮汐藻类的尺寸限制在潮间带上的海藻而产生大量水加速的潜力。建立了一个简单的理论模型,该模型根据植物的强度,形态和流体动力环境预测植物的“最佳”大小,并将这些预测的最佳大小与自然界中的植物大小进行比较。结果表明潮间带大型藻类的大小可能受到与流体加速相关的力的限制。但是,随后的数据表明该假设过于简单。尽管对冲浪区流量的测量证实了潮间带区域确实发生了异常的加速,但破碎锤施加在生物体上的力的其他记录表明,大的水动力加速力实际上并不普遍作用于潮间带动植物。因此,似乎不可能产生波浪的流体加速度实际上在限制沿海生物的大小方面起主要作用。更详细的分析表明,没有大的水加速度感应力是由于海浪区域加速的时间短暂且(特别是)空间尺度较小而导致的。现场测量还表明,施加在潮间带生物上的许多最大负荷是与波直接撞击在发芽的动植物上有关的“冲击”型作用力。通过使用数值模型探索这种力的后果,该数值模型通过理想的粘弹性“有机体”追踪短脉冲的传播。结果支持这样的概念,即大型藻类的低刚度为应对较大但瞬变的力提供了另一种低强度策略。在两个潮下海带的案例研究中,进一步研究了低刚度的其他影响,尤其是海藻在水流中偏转的趋势。在此表明,与摇摆植物动量变化相关的惯性力会极大地影响它们所承受的压力。还从流动记录中提取了湍流强度和能量耗散率的估计值,并讨论了冲浪区极端湍流特征的潜在生物后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号